Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

抖音内部有哪些大模型?你用的是哪个? 豆包和coze分别用的是哪个?

Answer

抖音内部使用的大模型包括月之暗面 KIMI、豆包、Minimax、通义千问和智谱清言。

关于模型的特点和选择:

  • Dify 是开源的,有直观界面和多种功能,社区活跃;Coze 由字节跳动推出,目前未明确是否开源,可能更侧重商业化服务,其插件能力丰富、搭建效率高。
  • 豆包的 function call 模型对于插件调用、Coze 内 json 格式输出较擅长;MiniMax 处理文字速度快;GLM 对用户提示词理解较好。模型选用需根据习惯、响应速度、生成质量、调用费用等综合考虑,且各模型在不断迭代。

需要注意的是,以上回答由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Dify 和 Coze 有什么异同

Dify和Coze都是大模型中间层产品,它们提供了将大型语言模型(LLM)集成到各种应用中的能力。以下是Dify和Coze的一些主要异同点:[heading2]开源性[content]Dify是开源的,允许开发者自由访问和修改代码,以便进行定制。Dify由专业团队和社区共同打造,促进了产品的灵活性和安全性。Coze由字节跳动推出,目前没有明确信息表明它是否开源。Coze可能更侧重于提供商业化服务和产品。[heading2]功能和定制能力[content]Dify提供直观界面,结合AI工作流、RAG管道、代理能力和模型管理等功能。它支持通过可视化编排,基于任何LLM部署API和服务。Coze提供丰富的插件能力和高效的搭建效率。Coze还支持发布到多个平台作为Bot能力使用。[heading2]社区和支持[content]Dify作为一个开源项目,拥有活跃的社区,开发者可以参与到产品的共创和共建中。Coze可能更多地依赖于官方的更新和支持,社区参与和开源协作的程度可能不如Dify。选择使用Dify或Coze时,开发者和企业需要根据自己的需求和目标来做出决策。该回答由AI大模型生成,请仔细甄别。

军师联盟BOT|同时询问多个大模型并返回汇总梳理后的结果

这个线上版本主要的技术栈其实就是工作流,在工作流中调用了这五个大模型:月之暗面KIMI,豆包,Minimax,通义千问和智谱清言。为什么暂时没有引入第六个模型,主要是考虑到在进行答案汇总时的输出截断问题:目前虽然大模型在设置时能把响应token长度设置为几万字,但在实际输出时,单次回复通常还是会被截断到1千字以内。我在官方文档和社区中没有找到这个问题的原因,我猜想可能是由于Coze现在的普及量在不断增长,免费版本大家的查询并发请求太多,所以系统在输出时做了一定限制。再结合最近Coze国际版已经在做商业化,估计国内版本也在为商业化增值服务预留一些空间。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

1.关于模型选择:1.1.没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如Doubao Function Call模型,对于插件调用、Coze内json格式输出比较擅长;MiniMax处理文字速度很快;GLM对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。1.2.我一般选择豆包·function call 32k。“function call”代表有着更好的Coze的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是array、object结构,请根据实测情况,考虑替换上豆包function call版本,其他的LLM可能会输出格式比较混乱。

Others are asking
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
有没有那种可以模仿抖音百万博主爆款文案的写作风格以及写作模板的AI
以下是一些关于模仿抖音百万博主爆款文案写作风格和模板的 AI 相关内容: 1. 画小二:Coze 工作流提供了一系列针对抖音热门视频转小红书图文的配置,包括整体结构图、各模块参数配置(如开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块等)的详细说明。同时,在小红书标题和正文写作方面,具备多种技能,如采用二极管标题法创作吸引人的标题,产出口语化、简短且含适当 emoji 表情和 tag 标签的 200 字左右正文。 2. 夙愿:介绍了使用 GPT 模仿创作内容的万能思路,特别是在 Prompt 编写中的数据清洗部分。指出对标博主的文案模板化,数据清洗有人工和自动两种方法,推荐使用 GPT4 的数据分析器进行自动清洗。 3. AIIP 共学模版自媒体全域运营:包含对标笔记的详细信息,如标题、作者、详情、账号、主页、封面、视频、文案等。以“Deepseek+即梦,包装设计步骤来啦”为例,介绍了利用 Deepseek 和即梦进行设计的步骤,并表示希望对用户有帮助。
2025-04-11
我想做一个AI机器人,用于自动回复我的抖音新消息,现在有办法能解决吗
目前可以通过 Coze 平台来实现让 AI 机器人自动回复您的抖音新消息。以下是相关信息: 微信的不同功能与 Coze 平台对接情况: 个人微信/微信群:之前 Coze 平台不支持直接对接,但国内版已正式发布 API 接口功能,直接对接成为可能。 微信公众号:Coze 平台支持对接,AI 机器人可自动回复用户消息。 微信服务号:Coze 平台支持对接,能提升服务效率。 微信客服:Coze 平台支持对接,可自动回答用户咨询,提高客服响应速度。 配置 AI 微信聊天机器人的步骤: 登录成功后,找另一个人私聊或者在群中@您,能看到机器人正常回复。 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”进行更改。 此后进行任何更改,都需“返回首页 右上角 点击重启,重启一下服务器”。 然后,在“文件”的【终端】里,输入“nohup python3 app.py&tail f nohup.out 重新扫码登录”。 关于添加插件,可参考。 疑问解答: 放行端口:类似于给房子安装门铃,通过放行特定端口(如 8888 端口)可通过互联网访问宝塔面板,管理和配置服务器上的服务。 Bot ID:是在 Coze 平台上创建的 AI 机器人的唯一标识,用于将微信号与特定机器人关联。 微信账号被封:若因使用机器人被封,可尝试联系客服说明情况。建议使用专门微信号作为机器人账号,并遵守微信使用规范。 服务器:需要一直开着,以保证机器人随时在线响应请求。 不懂编程:完全可以配置,按照教程一步一步操作即可。 配置问题:检查每步是否按教程操作,特别是 API 令牌和 Bot ID 是否正确。无法解决可到 Coze 平台的论坛或微信群求助。
2025-03-19
怎么搭建扣子智能体提取抖音文案并进行改写用到哪些插件,并给我配置参数与步骤图
以下是搭建扣子智能体提取抖音文案并进行改写所需的插件、配置参数及步骤: 1. 插件搭建: 点击个人空间,选择插件,点击创建插件。 插件名称:使用中文,根据需求起名。 插件描述:说明插件的用途和使用方法。 插件工具创建方式:选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具,填写工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以“/”开始,若使用 path 方式传参,用“{}”包裹变量)、请求方法等,结束后点击保存并继续。 2. 配置输入参数: 点击新增参数,填写所有需要使用的参数,保存并继续。 3. 配置输出参数: 如果一切填写正确,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 填入汉字“张”,点击自动解析。 解析成功后显示解析成功,可看到输出参数已填好,然后点击保存并继续。 4. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,安仔使用 Coze 免费创建 24 小时英语陪练的步骤包括: 1. 打开扣子首页,点击左上角创建 AI Bot 按钮。 2. 在弹窗输入 Bot 相关信息。 3. 设计人设与回复逻辑,根据功能需求设计提示词。 4. 调整模型设置,如改为 20 轮对话记录。 5. 选择使用插件,如英文名言警句、Simple OCR 等。 6. 设置开场白和预置问题。 7. 设置语音,选择亲切的英语音色。
2025-03-18
怎么搭建扣子智能体提取抖音文案并进行改写
以下是关于搭建扣子智能体提取抖音文案并进行改写的相关信息: 1. 团队介绍:野生菌团队(昆明),成员如罗文(组长)具有 10 年营销、5 年电商经验,是 AI 微软认证人工智能开发者和得到校友会昆明会长,负责项目组织、分工跟进、资源协调、思路整理等工作。罗文有多个相关作品,更多可查看扣子主页。 2. 搭建智能体: 创建一个智能体,输入人设等信息,放上相关工作流。配置完成后进行测试,但千万不要直接发布。 对于工作流中的特定节点,如【所有视频片段拼接】节点使用的插件 api_token,可作为工作流最开始的输入,用户购买后输入 api_token 再发布,以避免消耗他人费用。 3. 动手实践: 第一步创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体,注意配置相关插件和节点。 进行数据处理,注意代码节点输出的配置格式。 最后进行测试和发布,发布时选择多维表格,注意输出类型、输入类型等配置,完善上架信息,可选仅自己可用以加快审核。
2025-03-18
你现在是抖音运营,如何可以利用现有图片素材,自动生成服饰图文
以下是一些利用现有图片素材自动生成服饰图文的方法和相关资源: 1. TryOffDiff:这是一种 AI 脱衣技术,能够逆向打造服装图片。与虚拟试衣不同,它可以将衣服从照片中“摘取”生成标准化服装图,并且能够保留图案、褶皱、徽标等精细细节,即使原图中部分被遮挡,也能准确推断。其应用场景广泛,适合商品目录制作及电商平台服装展示需求。详细介绍: 2. 可生成自定义服装效果图,支持颜色、款式、材质等多种细节描述。基于 H&M Fashion Captions 数据集,提供多样化的时尚风格参考。模型权重为 Safetensors 格式,便于集成和使用。模型下载: 3. 在 Stable Diffusion 中,若看到好看的图片想复制其效果,可将照片导入。若为 SD 下载的 PNG 格式照片,右边会自动弹出照片信息,包括正面关键词、负面关键词等,可复制这些信息到“文生图”页面生成相似图片。若照片无法自动弹出信息,可使用“标签器(Tagger)”生成关键词。
2025-03-12
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
如果我想要系统学习coze,我应该怎么安排?
如果您想要系统学习 Coze,可以参考以下安排: 第一期共学回放 5 月 7 号() 大聪明分享|主题:Agent 的前世今生 每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 20:00@?AJ 主持开场 20:00 21:00 大聪明分享 21:00 21:30 关于 Coze 随便聊聊 5 月 8 号() 大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 20:00 21:20 大圣分享 5 月 9 号() 艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例 20:00 21:00 艾木分享 21:00 21:30 线上答疑 5 月 10 号() 罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 20:00 21:00 罗文分享 5 月 11 号() Itao 分享|主题:和 AI 成为搭子 20:00 21:00 Itao 分享 21:00 21:30 线上答疑 Agent 搭建共学快闪 0619 日程安排 6 月 19 日 20:00 开始 从零到一,搭建微信机器人 0 基础小白 张梦飞 小元 金永勋、奥伏 6 月 20 日 20:00 开始 Coze 接入、构建你的智能微信助手 完成第一课 张梦飞 吕昭波 安仔、阿飞 6 月 23 日 20:00 开始 微信机器人插件拓展教学 完成第一课 张梦飞 安仔 大雨 空心菜、AYBIAO、阿飞 6 月 24 日 20:00 开始 虚拟女友“李洛云”开发者自述 完成第一课 皮皮 安仔 6 月 25 日 20:00 开始 FastGPT:“本地版 coze"部署教学 完成第一课 张梦飞 银海 金永勋、AYBIAO 6 月 27 日 20:00 开始 Hook 机制的机器人使用和部署教学 0 基础小白,一台 Windows 10 以上系统的电脑 张梦飞 Stuart 阿飞、空心菜
2025-04-14
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
豆包如何创建智能体?
创建智能体的方法如下: 1. 通过 Coze 平台创建: 找到灵感:如果没有 Bot 灵感,可以查看获取灵感。 进行 Bot 创建: 打开扣子助手。 修改 Prompt,发送 Prompt1。 让扣子助手帮忙创建 Bot。 点击打开创建好的 Bot。 发布作品: 点击【发布】。 填写发布记录,发布到 Bot 商店。 复制智能体链接。 2. 在一枚扣子平台创建: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流:点击创建一个新的对话流(记得要和智能体关联),编排相关流程。 测试:找到一篇小红书笔记,试运行对话流,直接在对话窗口输入地址,查看数据是否成功。回到智能体的编排页面,同样进行测试,确保对话流执行成功。 发布:点发布后,只选择多维表格,然后进行配置。包括输出类型、输入类型等,完善上架信息,提交上架信息后,返回配置界面会显示已完成,即可完成最终的提交。 另外,在教学场景中使用豆包创建智能体时,例如让学生模拟杜甫进行回答,可设置相关 prompt,选择特定声音等,并通过学生小组讨论设计问题来进行教学。
2025-04-11
豆包如何创建智能体?
创建智能体的方法如下: 通过 Coze 平台创建: 找到灵感,可以查看获取。 进行 Bot 创建,通过扣子助手快速进行,包括修改 Prompt、让扣子助手帮忙创建 Bot 以及点击打开创建好的 Bot 等步骤。 发布作品,包括点击【发布】、填写发布记录并发布到 Bot 商店、复制智能体链接。 在一枚扣子平台创建: 第一步,创建一个智能体,使用单 Agent 对话流模式。 编排对话流,点击创建新的对话流并与智能体关联。 进行测试,找到一篇小红书笔记,试运行对话流。 发布,点发布后选择多维表格,进行配置,包括输出类型、输入类型等,完善上架信息并提交。 此外,还有在教学场景中使用豆包创建智能体的示例,如设定为杜甫的角色,并设定相关 prompt 和声音等。
2025-04-11
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
豆包AI有网址吗
豆包 AI 是抖音旗下基于云雀大模型开发的 AI 工具,提供聊天机器人、写作助手以及英语学习助手等功能。其访问网址是:https://www.doubao.com/ 。 此外,为您提供部分其他 AI 网站的信息: 文心一言:yiyan.baidu.com Beacons AI:beacons.ai Hugging Face:huggingface.co ZeroGPT:zerogpt.com Gamma:gamma.app Gauth:gauthmath.com Feedly:feedly.com Loom:loom.com mailchimp:mailchimp.com prezi:prezi.com Poe AI 平台是一个支持与多个智能 AI 机器人进行实时在线交流的聊天网站,包括 GPT4 等。注册账号后可免费使用,部分功能需要付费订阅。其官网地址是:https://poe.com/ ,可在官网帮助中心上找到具体教程。
2025-03-14
豆包如何克隆声音
以下是关于克隆声音的相关信息: ElevenLabs 推出了全自动化的 AI 配音或视频翻译工具。您只需上传视频或粘贴视频链接,它能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频中的声音进行配音。群友瑞华进行了测试,相关视频链接为: 。另外,有群友测试了豆包的音色模仿,读大概 20 个字的句子,5 秒就能生成非常像的音色,之后可用自己的声音读生成的文字内容。 在 Heygen 等网站可以自助购买声音克隆服务。 MiniMax 有两个适合任务的大模型(豆包的也不错):MiniMaxText01 支持 400 万 token 的上下文,T2A v2(speech01turbo)拥有最好的声音复刻效果。可通过其开放平台 https://platform.minimaxi.com/login 进行注册登录及实名认证。首次注册会赠送 15 元,无需充值就能玩。接着创建 API Key 并保存好,还可以克隆声音,链接为:https://platform.minimaxi.com/examinationcenter/voiceexperiencecenter/voiceCloning 。克隆时有几个地方要填:创建 voice id、上传复刻音频(10 300 秒,尽量安静)、上传音频 prompt(不超过 8 秒的声音)、试听文本(不超过 8 秒声音所念内容),然后勾选用户协议,点击“克隆”选项,过一段时间完成克隆。使用填写的 voice id 生成声音,即为克隆音色生成的声音。
2025-03-11
使用豆包即梦和通义app绘制海报封面都是出现文字不对的情况,有哪些改进的或者是更好的解决方案
以下是针对使用豆包即梦和通义 app 绘制海报封面出现文字不对情况的改进和解决方案: 使用豆包即梦: 1. 为其他城市定制艺术字海报:可以使用豆包来生成个性化设计。豆包会根据城市特色和地标调整提示词,创造符合城市风格的艺术作品。 打开豆包网站 https://www.doubao.com/chat 。 输入对应内容获得城市的 AI 绘画提示词。 2. 优化海报细节: 利用即梦中的消除笔工具修正细节错误。例如,若生成图片中有元素不协调或小细节(如文字笔画、图案)错误,可用消除笔去除不需要的部分。 多抽卡获取更理想设计。AI 绘画核心在于多抽卡,若首次生成效果不佳,可多次尝试或调整提示词细节抽卡,直至找到满意设计。 希望这些方案能帮助您解决问题,创作出满意的海报封面。
2025-03-07
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14