Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何进行知识蒸馏

Answer

知识蒸馏(Knowledge Distillation)是一种将复杂模型的知识转移到简单模型中的方法。其核心思想是利用预训练好的复杂模型(教师模型)指导较小模型(学生模型)的训练,使学生模型能模仿教师模型的行为,同时保持较小规模和较高效率。

蒸馏的核心在于让学生模型学习教师模型的输出分布,而非仅仅是硬标签(ground truth)。具体而言,教师模型为输入文本生成软标签(soft labels),即概率分布,学生模型通过模仿教师模型的软标签来学习。

目前以 Ollama 上下载的模型为例,最小的有 DeepSeek-R1-Distill-Qwen-1.5B,最大的有 DeepSeek-R1-Distill-Llama-70B,都是来自于 Deepseek R1 671B 的蒸馏,而非官方的 Deepseek 版本。仔细观察模型名称可以看到,Distill 代表“蒸馏”,Qwen 或者 Llama 代表使用的基础模型,一般是千问或者 Llama 。

Content generated by AI large model, please carefully verify (powered by aily)

References

知识图谱

知识图谱(Knowledge Graph,KG)是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。知识图谱于2012年5月17日被Google正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。知识图谱可以将Web从网页链接转向概念链接,支持用户按照主题来检索,实现语义检索。[heading2]关键技术[content]1.知识抽取:通过自动化的技术抽取出可用的知识单元实体抽取:命名实体识别(Named Entity Recognition,NER)从数据源中自动识别命名实体;关系抽取(Relation Extraction):从数据源中提取实体之间的关联关系,形成网状的知识结构;属性抽取:从数据源中采集特定实体的属性信息。2.知识表示属性图三元组3.知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,达到数据、信息、方法、经验等知识的融合,形成高质量知识库实体对齐(Entity Alignment):消除异构数据中的实体冲突、指向不明等不一致性问题;知识加工:对知识统一管理,形成大规模的知识体系本体构建:以形式化方式明确定义概念之间的联系;质量评估:计算知识的置信度,提高知识的质量。知识更新:不断迭代更新,扩展现有知识,增加新的知识4.知识推理:在已有的知识库基础上挖掘隐含的知识

AI术语库-人工标注版

|术语ID|原文|译文|领域|易混淆|缩写|不需要提醒||-|-|-|-|-|-|-||ROW()-1|Kernel Machine|核机器|AI|1||||ROW()-1|Kernel Matrix|核矩阵|AI|1||||ROW()-1|Kernel Method|核方法|AI|1||||ROW()-1|Kernel Regression|核回归|AI|1||||ROW()-1|Kernel Trick|核技巧|AI|1||||ROW()-1|Kernelized|核化|AI|1||||ROW()-1|Kernelized Linear Discriminant Analysis|核线性判别分析|AI|||||ROW()-1|Kernelized PCA|核主成分分析|AI|||||ROW()-1|Key-Value Store|键-值数据库|AI|||||ROW()-1|KL Divergence|KL散度|AI|1||||ROW()-1|Knowledge|知识|AI|1||||ROW()-1|Knowledge Base|知识库|AI|1||||ROW()-1|Knowledge Distillation|知识蒸馏|AI|1|||

详解:DeepSeek深度推理+联网搜索 目前断档第一

蒸馏模型(Distillation Model)是一种通过知识蒸馏(Knowledge Distillation)技术将复杂模型的知识转移到简单模型中的方法。其核心思想是利用一个预训练好的复杂模型(教师模型)来指导一个较小的模型(学生模型)的训练,使学生模型能够模仿教师模型的行为,同时保持较小的规模和较高的效率。蒸馏的核心是让学生模型学习教师模型的输出分布,而不仅仅是硬标签(ground truth)。具体来说:教师模型为输入文本生成软标签(soft labels),即概率分布。学生模型通过模仿教师模型的软标签来学习,而不是直接学习硬标签。目前以Ollama上下载的模型为例:最小的有DeepSeek-R1-Distill-Qwen-1.5B,最大的有DeepSeek-R1-Distill-Llama-70B都是来自于Deepseek R1 671B的蒸馏,而非官方的Deepseek版本,仔细观察模型名称可以看到,Distill代表“蒸馏”,Qwen或者Llama代表使用的基础模型,一般是千问或者Llama[heading1]系统提示词[content]来自宝玉:https://mp.weixin.qq.com/s/vAp2w-I5ozTw-7R6jreLMw[heading2]获取系统提示词的提示词[content][heading4]获取后系统提示词如下[heading4]获取后系统提示词(2)如下[heading4]英文系统提示词

Others are asking
热点的大模型微调蒸馏工具有哪些
以下是一些热点的大模型微调蒸馏工具: FLUX.1:包括 FLUX.1(可商用,为本地开发和个人使用定制,生成速度快,内存占用小,在 Apache 2.0 许可下公开提供,支持在 Replicate、fal.ai 和 Comfy UI 等平台使用,且支持用户根据自己数据集微调)。其训练参数高达 120 亿,在图像质量、提示词跟随等多方面超越流行模型,工作原理基于混合架构,结合变换器和扩散技术。 基于阿里云 PAI 平台:可复现 R1 蒸馏及蒸馏训练模型过程。部署 32b 的蒸馏模型展示效果,包括模型部署(如选中模型卡片后的操作、选择 vLLM 部署、涉及竞价系统等)、蒸馏数据获取(在本地 python 环境或 notebook gallery 建立实例执行代码获取蒸馏数据集)等。 DeepSeek:PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。可登录 Pad 控制台通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价部署,部署后可在模型在线服务 EAS 查看状态。还介绍了模型 API 调用、服务关停、蒸馏概念、应用场景及部署实操等。
2025-04-13
模型蒸馏
模型蒸馏是指教师模型将知识蒸馏给学生模型,有多种蒸馏方式。其应用场景广泛,例如在车机等算力有限的场景中,能让小模型在特定领域取得良好效果,还能实现低成本高速推理和修复模型幻觉。 在实际操作中,PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。例如在阿里云 PAI 平台上进行模型蒸馏微调时,由于上一步中蒸馏的数据集很小,不足以改变模型权重,因此可以使用别人做好的数据集。在使用前可以打开查看里面的结构,和蒸馏出来的数据结构是否一致。然后下载并解压数据集,在 PAI 平台的数据集中找到 OSS 存储,建立数据集并上传。接着选择模型进行部署训练,如选择 7binstruct 的原生模型,选择训练,注意超参配置。训练完成后可以测试模型效果,在 model gallery 里面找到训练好的模型进行部署和调试。 此外,ComfyUI 原生支持 FLUX.1,FLUX.1 有三个变体:FLUX.1是一个蒸馏的 4 步模型,拥有 Apache 2.0 商用许可,适用于在本地进行部署或者个人使用。相关模型的链接、模型与工作流地址以及说明文档均可获取。 在云端部署操作方面,登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。模型试用可以使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。同时要注意模型 API 的调用方法,包括查找位置、获取 token 等,使用后要及时停止或删除服务以避免持续付费。
2025-02-28
蒸馏和微调分别是什么意思,他们有关联吗
蒸馏和微调是在人工智能领域中常见的概念,它们有一定的区别和联系。 蒸馏是一种模型压缩技术,通过将复杂的大模型的知识和能力“提炼”到较小的模型中,以减少模型的参数和计算量,同时保持一定的性能。 微调则是在已有的预训练模型基础上,使用特定任务的数据对模型进行进一步的训练,以使其在特定任务上表现得更好。 它们的关联在于:都是为了优化模型在特定场景下的性能。不同之处在于,蒸馏侧重于模型压缩,而微调侧重于针对特定任务的适应性训练。 提示词和微调都是提高模型表现的方法,但方式不同。提示词是在使用模型时直接提供特定的指令或上下文,引导模型生成合适的回答,灵活方便,无需重新训练模型。微调则需要对模型进行额外训练,使用特定任务的数据调整模型参数,使其在该任务上表现更佳,但需要时间和计算资源。 微调具有一些优点,如能提高特定任务的性能和效率,适用于强调现有知识、自定义结构或语气、教授复杂指令等,但不适用于添加新知识和快速迭代。成功案例如 Canva 通过微调显著提高了性能。最佳实践包括从提示工程和小样本学习开始、建立基线、从小处着手并注重质量,还可以将微调和 RAG 相结合以获得最佳性能。
2025-02-26
知识蒸馏是什么
知识蒸馏是一种模型压缩方法。在训练过程中,大模型作为教师模型,轻量级模型作为学生模型,学生模型不仅学习任务的真实标签,还学习教师模型生成的软标签,从而能够“站在巨人的肩膀上”学习,提高自身性能。例如,NVIDIA 技术博客介绍了通过剪枝和知识蒸馏将 Llama3.1 8B 模型缩减为 Llama3.1Minitron 4B 模型的方法。剪枝通过移除模型中的一些参数来减少计算需求和内存占用,而知识蒸馏让小模型学习大模型的输出。此外,在一些情况下,可能存在无意导致的信息蒸馏现象。
2025-02-07
知识蒸馏
知识蒸馏是一种模型压缩和训练的方法。在训练中,大模型作为教师模型,轻量级模型作为学生模型,学生模型不仅学习任务的真实标签,还学习教师模型生成的软标签,从而能够“站在巨人的肩膀上”学习。例如,NVIDIA 技术博客介绍了通过剪枝和知识蒸馏将 Llama3.1 8B 模型缩减为 Llama3.1Minitron 4B 模型的方法。剪枝通过移除模型中的一些参数来减少计算需求和内存占用,而知识蒸馏让小模型学习大模型的输出以提高性能。轻量级模型基础能力的增强,对未来的 AI 应用生态具有重要意义。同时,使用强化微调技术,轻量级模型能够通过精选数据的训练超越同代大模型的表现,这对垂直领域的模型应用也将产生很大影响。
2025-02-07
什么事大模型的蒸馏
模型蒸馏可以比作教学过程。在大模型中,一个大型专家模型(老师)将其知识传递给一个更小、更紧凑的模型(学生)。其目标是让学生模型学习最重要的技能,而不需要与老师模型相同的庞大资源。 例如,在谷歌 Gemini 模型中,Gemini Nano 是通过模型蒸馏的过程从更大的 Gemini 模型中提炼知识创建而成,能够在智能手机等设备上运行。 在 FLUX.1 模型中,FLUX.1蒸馏而来,具备相似的图像质量和提示词遵循能力,但更高效。
2024-12-06
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
如何使用cursor进行编程
以下是关于如何使用 Cursor 进行编程的相关信息: Cursor 旨在让您极其高效,是使用 AI 进行编码的最佳方式。您可以从代码库中获得最佳答案,参考特定文件或文档,一键使用模型中的代码。 它允许您使用指令编写代码,通过简单的提示就能更新整个类或函数。 Cursor 能通过预测您的下一个编辑,让您轻松完成更改。
2025-04-18
请给我提供一个 AI辅助我进行知识管理的方案
以下是一个 AI 辅助知识管理的方案: 1. 利用提示词规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可分析您的工作模式和内容类型,自动生成提示词,助您将信息和知识分类到相应部分,简化分类过程,加快组织和检索信息。核心是理解以行动为驱动的笔记逻辑。 2. 借助提示词设计笔记标签系统:有效的标签系统对知识管理很关键,AI 能分析笔记内容和使用习惯,推荐合适的标签和结构,提高检索效率。 3. 让知识助手 Bot 渐进式积累领域知识:随着在特定领域的深入,需要系统积累和更新知识。知识助手 Bot 可根据学习进度和兴趣点,定期推送相关文章、论文和资源,实现渐进式学习,扩展知识边界并确保知识更新。例如基于 dify.ai 将数百个思维模型整合成知识库,根据不同对话和条件判断为用户选择适用的思维模型分析工具,封装成智能分析的 Bot。 4. 基于已积累知识的 RAG 方法进行深度研究:RAG 是结合检索和生成的 AI 模型,应用于知识管理,能在深度研究时自动检索相关知识点和资料,辅助构建更全面深入的分析。 5. 打造个人知识导师,随时对话辅助梳理线索:创建个人知识管理员机器人,随时与之对话,询问特定知识点或寻求解决问题思路。它能基于知识库自学习,了解您的知识结构和需求,成为不可或缺的知识伙伴。 6. 构建最了解您的智能体作为 AI 写作助手:涵盖构思、草稿生成、内容迭代、润色与优化等全流程。构思阶段利用智能体生成创意点、主题或大纲;草稿生成基于构思让智能体生成文本草稿;内容迭代通过 promptchain 工具设计迭代提示修改完善草稿;润色与优化对最终文本进行语言风格和语调调整。通过实践和反馈优化 prompt 设计,使写作助手贴合个人风格和需求。 此外,生成式人工智能在知识管理应用程序方面也有新兴应用,例如用作管理组织内基于文本(或可能基于图像或视频)知识的手段。一些研究表明,针对组织内特定知识体系微调模型培训,可有效管理组织知识。一些公司正与领先的商业提供商合作探索基于生成式人工智能的知识管理理念,但用户可能需要培训或帮助来创建有效提示,且知识输出应用前可能仍需编辑或审查。
2025-04-11
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
如何用rpa来实现读取本地excel表格里的内容进行筛选,提取某些数据值后,再自动化填写到飞书的多维表格去。怎么来实现这个功能
要使用 RPA 实现读取本地 Excel 表格内容进行筛选,并将提取的数据值自动化填写到飞书的多维表格,可参考以下步骤: 1. 关于扣子:“”(Coze)是字节跳动在 2024 年上线的新一代一站式 AI Bot 开发平台,也被称为“字节版 GPTs”。它是一个低门槛的 AI 应用开发平台,其核心目标是让没有编程基础的用户也能够轻松参与到 AI 生态的建设中。 2. 登录后,在左侧功能列表的工作空间中,点击右上角“+字段”创建工作流,自行输入名称和描述。 3. 已做好工作流后,逐步拆解每个节点的配置: 开始节点:此节点不需要做任何配置,没有输入以及输出。 读取飞书表格内容节点:点击开始节点后面的“+”,搜索“飞书多维表格”,选择“search_record”功能。添加后,点击该节点的配置,在界面右侧的参数框中,需要填写 app_token、field_names。filter 是对数据的筛选条件,没有筛选需求可直接忽略。其中,app_token 是多维表格的唯一标识符,即表格 URL 中的一段;field_names 则是要读取的具体字段,比如“标题”、“内容”,以作为后续操作的输入。该节点运行后,就能将多维表格中的内容提取出来。
2025-04-09
有没有全自动AI剪辑工具,丢入素材后可以根据我的规则要求设置进行多素材混剪
目前有一些工具可以帮助您实现全自动 AI 剪辑,以下为您介绍一种多素材混剪的方法: 1. 声音克隆: 工具:Fish Audio 操作: 准备一段需要克隆的音频(可以是类似屈原的古风声音,或自行录制一段)。 打开网站:https://fish.audio/zhCN/train/newmodel/ 。 上传准备好的音频,按照指引完成声音克隆。 进入声音库选择需要使用的声音,将第一步生成的文案输入,使用克隆好的声音生成对应的音频文件。 下载生成的音频文件备用。 2. 视频合成: 工具:Viggle.ai 操作: 在网上下载“回答我”的原视频。 打开 Viggle.ai 网站,登录后进入视频合成功能:https://viggle.ai/createmix 。 上传“回答我”原视频和第二步生成的人物形象图,生成新版本的“回答我”视频。 预览效果,满意后下载合成好的新视频。 3. 视频剪辑: 工具:剪映 操作: 打开剪映软件(手机或电脑版均可)。 导入第二步合成好的新视频和第一步生成的音频文件。 将音频与视频时间轴对齐,确保声音和画面同步,添加字幕等。 如需叠加特殊背景,可以导入自己的背景图(如楚国风景)。 预览整个视频,检查效果,微调后导出最终视频(建议 MP4 格式)。
2025-04-09