Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

开一个AI数据标注公司的落地和具体实操应当如何

Answer

开设一家 AI 数据标注公司需要以下落地和具体实操步骤:

  1. 市场调研

    • 了解当前 AI 数据标注市场的需求和趋势。
    • 分析竞争对手的优势和不足。
  2. 团队组建

    • 招聘具备数据标注技能和经验的人员,包括标注员、质检员等。
    • 对团队进行培训,确保他们熟悉标注规范和流程。
  3. 制定标注规范

    • 明确不同类型数据的标注标准和要求。
    • 建立质量控制流程和标准。
  4. 技术和工具准备

    • 选择适合的数据标注工具和软件。
    • 搭建稳定的 IT 基础设施,保障数据安全和存储。
  5. 寻找客户和项目

    • 与 AI 企业、科研机构等建立联系,争取合作机会。
    • 展示公司的标注能力和优势。
  6. 项目管理

    • 合理安排标注任务,确保按时交付。
    • 及时处理项目中的问题和变更。
  7. 质量监控

    • 定期对标注结果进行抽检和评估。
    • 依据质量反馈对标注流程和人员进行调整和优化。
  8. 合规与法律事务

    • 确保公司的运营符合相关法律法规。
    • 处理好数据隐私和知识产权等问题。
  9. 财务管理

    • 制定合理的预算和成本控制策略。
    • 确保公司的资金流稳定。
  10. 持续改进

    • 关注行业动态,不断改进标注技术和流程。
    • 提升公司的竞争力和服务质量。
Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
ai自媒体变现实操
以下是关于 AI 自媒体变现的实操内容: 对于 0 基础编程小白从 0 到 1 搭建网站: IP 用户旅程图包括网站/产品体验、价值展示、口碑裂变、私域转化、深度服务、用户复购等环节。 赛道反差化打法智能体可让视频火速出圈,比如智能体引流效果、反差打法等。 优秀的自媒体不仅是生产者,更是连接者和转化者。 公众号生成器:https://themetunegenerator.vercel.app/ ,可选择主题、风格(如干货实用型、故事叙事型、轻松幽默型等)生成公众号文案。 电脑要求:Windows 需 Windows 10 或以上,macOS 需 macOS 10.15或更高版本。 开发环境部署:魔法很重要,需安装 NodeJS(https://nodejs.org/en/download)、注册 Github 并下载 Github Desktop(https://desktop.github.com/download/),还可能涉及安装 cnpm 等。 会思考产品创意的你加上会编程的 AI 等于产品 MVP,包括产品规划与设计(确定产品核心功能)、开发实施(使用 Lovable 生成前端代码、导入 cursor 等),让 AI 成为产品设计师梳理细节,所有不会的问题都可问 AI。 自媒体人通过 AIGC 进行流量变现的心路历程: 变现渠道包括直播带货、橱窗带货(抖音需 1000 粉丝、托管橱窗)、商单、介绍粉丝接项目等。 具体的商业变现项目有画小二 AIGC 的 AI 绘图十二生肖、化妆品公司产品设计、产品包装设计、海报设计、游戏背景设计、儿童绘本、AI 漫画、PFP 头像设计、AI 图片+视频(徐悲鸿教育系列 AI 内容)、AIGC+地方文旅、重庆美术馆数字人、长沙美仑美术馆数字人、玛莎拉蒂汽车宣传片、喜马拉雅微短剧等。 广告方面,可通过平台(如抖音星图、B 站花火)接私单,视频广告价格可自定义设置。
2025-04-15
coze工作流的相关教程。要求从入门到实操的最新资料
以下是关于 Coze 工作流从入门到实操的相关资料: 一、一泽 Eze 的教程 Step 1:制定任务的关键方法 1. 设计每个子任务的执行方法 阅读理解小作业:基于英文原文,精心策划 3 道符合 CET4 难度的阅读理解题目。每道题均提供 A、B、C、D 四个选项,正确答案所在选项顺序随机,题目和选项均以英文呈现。题目的参考格式如下: 1) A. B. C. D. 参考答案:针对 3 道题目,生成题目答案。预期格式如下: 1) 答案: 2) 答案: 3) 答案: 英文音频:根据原文,利用 TTS 技术朗读全文 全文对照精读:根据原文,按照以下格式,分段完成全文精读结果的输出: 音标: 中文释义: 英文例句: 例句翻译: 二、大圣的教程 二、Coze 使用教程 1. 工作流AI Agent 的内功心法 节点:工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数。 Coze 平台支持的节点类型: LLM(大语言模型):使用输入参数和提示词生成处理结果。 Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 2. 创建和使用工作流 这一块官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,学习工作流强烈建议大家跟着实操一遍: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 三、蓝衣剑客的教程 三、Coze 简介 1. 工作流 在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流。例如,使用获取新闻插件构建一个获取新闻列表的工作流;使用大模型节点接收并处理用户问题等。 更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流。例如,在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。
2025-03-12
AI视频实操
以下是关于 AI 视频实操的相关内容: 如果您想制作 AI 换脸、AI 数字人视频,可按以下步骤进行: 1. 准备内容:先准备一段视频中播放的内容文字,比如产品介绍、课程讲解、游戏攻略等,也可利用 AI 生成这段文字。 2. 制作视频:使用剪映 App 进行简单处理。在电脑端打开剪映 App,点击“开始创作”,选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,添加文字内容轨道,然后将准备好的文字内容替换默认文本内容,为数字人提供语音播放内容及生成相应口型。 如果您想用 AI 把小说做成视频,通常包括以下步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 以下是一些可利用的工具及网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可以基于文本描述生成图像。网址: 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址: 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址: 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址: 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址: 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址: 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址: 8. 故事 AI 绘图:小说转视频的 AI 工具。网址: 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-12
智能体实操
以下是关于智能体实操的详细步骤: 创建智能体: 1. 使用单 Agent 对话流模式。 2. 编排对话流: 点击创建新的对话流并与智能体关联。 对于获取笔记详情节点和笔记评论节点,配置 cookie,note_link 使用开始节点的 USER_INPUT。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 工作流的结束节点选择使用代码的返回数据。 测试: 1. 找到一篇小红书笔记。 2. 试运行对话流,在对话窗口输入地址,看到数据即为成功。 3. 回到智能体的编排页面,以同样方式测试,确保对话流执行成功。 发布: 1. 点击发布,选择多维表格,然后点击配置。 2. 打开配置页面,注意以下几点: 输出类型选择文本。 输入类型选择字段选择器。 完善上架信息,填写表格,选择发布范围时可选择仅自己可用以加快审核。 3. 提交上架信息后,返回配置界面显示已完成,即可完成最终提交。 另外,在搭建智能体时,创建智能体后输入人设等信息,并放上创建的工作流。但注意工作流 2 中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用,所以不能直接发布。您可以将 api_token 作为工作流 2 最开始的输入,让用户自己购买后输入 api_token 再使用,然后发布。
2025-03-04
学完以上课程 熟练上手实操,需要多长时间,请回答需要多长时间而不是回答课程数量
学习不同的 AI 课程并熟练上手实操所需时间因人而异,但大致估计如下: 《雪梅 May 的 AI 学习日记》中制作微信机器人的共学课程,包含 6 个分享,每个分享 2 3 小时,需要有大块完整时间,可能需要数天甚至更长时间才能学完。 入门强化学习,如果没有基础,学习概率论和线性代数相关课程大约需要周末一天时间;吴恩达和李宏毅的课程约 25 小时;《动手学深度学习》前五章约 10 小时;王树森课程的前几节约 5 小时;《动手学强化学习》看到 DQN 部分约十几小时。 微软 AI 初学者入门课程为期 12 周、共 24 课时。 需要注意的是,这只是一个大致的估计,实际所需时间会受到个人学习能力、投入程度等因素的影响。
2025-02-19
我想学习AI,但是不知道如何入门,希望你可以帮我梳理出AI的各个应用方向,要求要有具体的实操方法和必坑指南,能应用于生活和工作中,适合新手学习
以下是为您梳理的适合新手学习 AI 的应用方向、实操方法和避坑指南: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 避坑指南: 1. 不要急于求成,AI 学习需要逐步积累。 2. 注重理论与实践结合,避免只学习理论而不进行实际操作。 3. 对于复杂的概念和算法,要多花时间理解,不要一知半解。 4. 在选择学习资源时,要注意其质量和适用性。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-06
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
数据标注领域的TOP公司有哪些
在数据标注领域,以下是一些相关的公司: 整数智能:致力于成为 AI 行业的数据合伙人,对标美国头部公司 Scale ai,其提供的智能数据工程平台(MooreData Platform)与数据集构建服务(ACE Service),服务于智能驾驶、生成式人工智能、具身智能等多个人工智能应用场景,不仅深耕服务中国本地客户,还在积极拓展海外市场。 需要注意的是,数据标注领域的公司情况可能会随时间变化而有所不同。
2025-03-07
生成一个标注宽1550mm,长2285mm的长方形图片
很抱歉,暂时无法直接为您生成指定尺寸的长方形图片。但您可以使用专业的图像编辑软件,如 Adobe Photoshop、Illustrator 等,或者一些在线图像生成工具,按照以下步骤来创建: 1. 打开所选的图像编辑工具或在线工具。 2. 在新建文档或项目时,设置宽度为 1550mm,长度为 2285mm。 3. 根据您的需求进行后续的图像绘制、编辑或添加元素等操作。 希望这些信息对您有所帮助。
2025-02-20
生成一个标注宽1550mm,长2285mm的图片
很抱歉,目前仅根据您提供的“生成一个标注宽 1550mm,长 2285mm 的图片”这一需求,无法直接为您生成相应图片。您能否再补充一些更具体的信息,比如图片的内容、风格、用途等,以便为您提供更有效的帮助。
2025-02-20
有关于数据标注行业发展趋势的文章吗?
以下是关于数据标注行业发展趋势的相关内容: 数据标注行业呈现出以下几个主要的发展趋势: 从量到质的转变:早期大模型训练侧重通过大量算力和大规模数据集来提升性能,但随着技术进步,数据质量成为提高模型性能的关键瓶颈,更注重提高数据的质量和相关性,而非单纯增加数据量和算力。 数据标注向知识密集型转变:多模态模型需处理多种类型数据,使数据标注过程更细致复杂。例如进行情绪判断或推理时,需要更高水平的理解和分析能力。这要求从事标注的人员不仅要接受专业培训,在某些情况下还需要特定领域专家执行。 数据标注的自动化和合成数据的使用:随着人工智能技术发展,数据标注领域正经历自动化转型,可使用大模型自动标注数据,提高标注效率并减少人力成本。合成数据使用越来越普遍,因其成本较低、能避免隐私问题及可生成长尾场景数据。例如在自动驾驶领域,可用于生成罕见但关键的路况场景,提高模型的鲁棒性和准确性。 此外,相关法律法规也对生成式人工智能技术研发过程中的数据标注做出规定,如提供者应制定清晰、具体、可操作的标注规则,开展数据标注质量评估,对标注人员进行必要培训等。
2025-02-17
数据标注这个行业前景如何
数据标注行业具有一定的前景,但也面临着一些变化和挑战。 从前景方面来看: 1. 数据质量成为提高模型性能的关键瓶颈,这使得数据标注的重要性日益凸显。 2. 多模态模型的发展需要更加细致和复杂的数据标注,为行业带来了更多需求。 3. 随着技术的进步,数据标注不再是简单的劳动力作业,而是向知识密集型转变,这要求从事标注的人员具备更高的专业水平和特定领域的知识,从而提升了行业的专业性和价值。 然而,也存在一些挑战: 1. 数据标注工作繁琐,数据清洗工作占据了大量时间。 2. 合成数据的使用虽然带来了便利,但也存在与真实数据分布不一致可能导致模型偏差等风险。 在数据标注的具体操作上,数据标注可以分为自动标注和手动标注。自动标注主要依赖像 BLIP 和 Waifu Diffusion 1.4 这样的模型,手动标注则依赖标注人员。例如使用 BLIP 自动标注 caption 时,需要进行一系列的操作和配置。
2025-02-05
ai训练师和标注师的工作区别是什么
AI 训练师和标注师的工作存在以下区别: 1. 工作重点:标注师主要负责编辑和扩大数据集,对数据进行标注和整理;而训练师在训练模型时涉及数据清洗、数据生成、对齐等操作,需要用到 Prompt 工程的地方较多。 2. 技能要求:标注师侧重于对数据的准确理解和标注能力;训练师则需要具备更深入的技术知识,包括对模型训练原理和相关技术的掌握。 3. 工作影响:标注师的工作直接影响数据集的质量和丰富度,为模型训练提供基础;训练师的工作决定了模型的训练效果和性能。
2024-11-28
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
AI在BizDevOps中的场景落地及应用
以下是关于 AI 在 BizDevOps 中的场景落地及应用的相关内容: AI 在 DevOps 中的应用: AI 可以承担指定计划、拆分任务和调用工具的角色,但目前无法完全评定任务结果的正确性和质量。 现阶段更适合让 AI 辅助完成部分任务,如画原型图、设计表结构、写自动化测试代码等,但需要人类验证后才能进行下一步操作。 完全依赖 AI 可能带来风险,如生产环境出错或被黑客恶意利用漏洞。 AI 的记忆能力: ChatGPT 支持记忆功能,可通过摘要保存对话内容以延续角色和对话风格,但新开会话可能在高推理任务中效果更好。 建议将角色设定和部分对话作为样例(fewshot)放入提示词中,以优化生成质量。 学习 GPT 的妙招: 结合视频教程、文字转录和基础资料,通过 ChatGPT 讲解学习内容。 角色反转,自己当老师,ChatGPT 当学生,通过提问互动和查漏补缺能有效提升学习效果。 AI 对软件工程的影响: 涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。 自动代码生成工具(如 GitHub Copilot)提高编程效率,AI 也助力智能测试与运维。 DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。 AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 其他相关动态: OpenAI CEO 宣布开发 AI 设备,目标颠覆智能手机。 OpenAI 推出全新 Deep Research,让 ChatGPT 成为研究助理。
2025-04-01
chatbi落地方案
以下是关于 ChatGPT 落地方案的相关内容: 产品经理如何用 ChatGPT: 背景前提:非专业 BI 工程师,依靠 GPT 提示和查询资料解决不擅长领域问题及学习成长。使用免费的 ChatGPT3.5 版本,因充值问题未解决,且账号登录出现问题无法截图还原完整对话过程。 使用过程: 先整理与 GPT 交互的基本思路及步骤,包括旧代码输入、需求及现状问题输入、调试优化、结果输出验证。 旧代码输入时,1900 行代码直接粘贴报错,采取分次输入再联合的方式,让 GPT 理解旧代码实现效果及熟悉查询表和字段,方便后续生成优化代码直接在数据库运行。原 SQL 主要逻辑是统计近 30 天内每天的业务数据日报,按天和地区分组汇总,需查询多张表几百万条数据。GPT 理解基本正确,并主动提出优化建议。 LLM 落地思考: 对大模型的任务理解、编程能力、输出遵循有较高要求,需要 LLM 前处理与后处理工程兜底,因企业流程自动化出错影响面广。该方向能帮助企业完成数字化转型并升级至业务自动化,多为定制化服务,业务爆发期可能在几年后经济回暖时,目前需求方可能优先是国企与金融等数字化成熟且有国家 AI+任务驱动的地方。 采用 RAG 方案进行知识应用的工程框架,包括 AI 搜索、智能客服、流水线问题定位等场景,通过给予大模型已有行业知识解决问题,但前处理过程对方案效果影响较大。 ToC 业务方面,当前爆款产品如 ChatGPT、Midjourney 等,暂未出现像微信这样的大杀器 C 端产品,未来 C 端产品形态难以确定。
2025-03-22