Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

零基础学习ai先学习哪一步

Answer

对于零基础学习 AI,您可以按照以下步骤进行:

  1. 了解 AI 基本概念:
    • 建议阅读「从这里启程」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

总之,无论是零基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

二师兄的AI启蒙之路(2024年)

我叫二师兄,来自上海,典型的80后,房地产行业从业二十年,计算机零基础。兴趣爱好:悠悠球、数码产品、游戏、音乐、手办、乐高、汽车2024年[heading1]一月[content]4070TiSuper发售,我买了显卡配了4K160显示器,备战2024年8月发售的国产3A大作黑悟空和2025年发售的GTA6[heading1]二月[content]过年后,在七彩虹的售后群,有个老哥在分享用AI绘画的心得,问他要了SD秋叶安装包,下载了教学视频,自此迈出AI学习的第一步[heading1]三月[content]啃完SD的所有教程,秉着不浪费显卡资源的原则开始炼丹,人脸、画风、风景、景观、建筑的丹练了一些,不过因为图片数据集的质量一般,且很多是公司里的项目案例图片,所有lora仅供自嗨[heading1]四月[content]与小伙伴探讨AI变现的途径,尝试用GPT和SD制作图文故事绘本、小说推文的项目,因组员各自忙于事业而不了了之。但过程中练了一些绘本风格的丹。[heading1]五月[content]因公司岗位可能有调动,提前把电脑运到武汉的家里,但最终工作地点仍在昆明,开启了长达五个月无硬件支持的AI学习之路。有幸加入到Prompt battle社群,开始了Midjourney的学习,这一阶段打磨了另一种形式的文生图提示词学习。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14
如何一步一步实现RAG 模型的私有化部署
要一步一步实现 RAG 模型的私有化部署,可参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 关于 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 需先安装,访问 https://ollama.com/download/ 下载安装,安装后确保 ollama 后台服务已启动。 5. 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题实现 RAG。 6. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯。 2. 上下文数据质量和大模型的性能决定 RAG 系统性能上限。
2025-03-20
提示词设计方法,请从初级到高级一步步进行说明讲解
以下是从初级到高级的提示词设计方法的讲解: 初级阶段: 在初级阶段,重点是明确表达您的需求和期望。例如,清晰地描述任务、问题或所需的输出类型。 中级阶段: 随着经验的积累,可以尝试更详细和具体的描述。包括提供更多的背景信息、限制条件和关键要点,以引导模型生成更符合期望的结果。 高级阶段: 1. 自动提示词工程(APE): 提示词生成:利用 LLM 针对特定任务产生多种提示词,借助其语言数据库和上下文理解。 提示词评分:根据清晰度、特定性和推动期望结果的潜力等关键指标对提示词进行严格评估。 完善和迭代:根据评分调整和优化提示词,增强其与任务要求的一致性,通过持续改进提高提示词质量。 2. 样例驱动的渐进式引导: 把相关的样例文件与提示词同时发送给模型,让模型自行总结所需结果。 经过多次调试和根据测试 bug 微调提示词,以确保稳定运行。 3. 格式选择: 对于刚入门的朋友,推荐使用直观易懂的 LangGPT 结构化提示词,以便快速上手。 对于进阶用户,一方面可以继续使用 LangGPT 结构化提示词,另一方面如有精力和好奇心,可尝试 Lisp 伪代码格式,有助于精炼提示词和提升对措辞理解、概念认知的能力。 需要注意的是,部署 APE 并非没有挑战,可能需要大量计算资源和建立有效评分指标,初始设置也可能需要精心策划的种子提示词集来有效指导生成过程。重要的是提示词的内容要与 AI 的“理解机制”相契合,而非外在形式。
2025-03-18
学习开发ai的第一步是什么?
学习开发 AI 的第一步包括以下几个方面: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-03-14
在学习过ai的基本原理以及尝试过一些大众的ai应用后,我想进一步深入了解ai,给我可以参考的方向
以下是您进一步深入了解 AI 可以参考的方向: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,其上手容易且实用。 4. 实践和尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品创作作品。 分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 6. 精进学习: 了解 AI 背景知识,包括基础理论、历史发展。 掌握数学基础,如统计学基础(熟悉均值、中位数、方差等)、线性代数(了解向量、矩阵等)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 熟悉算法和模型,如监督学习(了解线性回归、决策树、支持向量机等)、无监督学习(熟悉聚类、降维等)、强化学习(了解基本概念)。 学会评估和调优,包括性能评估(了解交叉验证、精确度、召回率等)、模型调优(学习使用网格搜索等技术优化模型参数)。 掌握神经网络基础,包括网络结构(理解前馈网络、卷积神经网络、循环神经网络等)、激活函数(了解 ReLU、Sigmoid、Tanh 等)。
2025-03-11
我是小白,学习ai第一步怎么开始
对于小白来说,学习 AI 的第一步可以从以下几个方面入手: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 以下是一些个人的 AI 学习经历供您参考: 二师兄在 2024 年 2 月过年后,在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现的途径,5 月因工作变动开启了无硬件支持的 AI 学习之路,并加入 Prompt battle 社群,开始了 Midjourney 的学习。 元子语的 AI 之旅开始于 prompt,在作为《谁是人类》活动的线上志愿者过程中,意识到学习 AI 的门槛在社区里已被解决,从而被点燃了学习的热情。
2025-03-05
如何一步步学AI,学生
对于学生学习 AI ,可以按照以下步骤进行: 1. 从编程语言入手学习:可以选择 Python 、 JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:例如使用 ChatGPT 、 Midjourney 等 AI 生成工具,体验 AI 的应用场景。还可以探索一些面向学生的 AI 教育平台,如百度的“文心智能体平台”、 Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手学习 AI : 1. 了解 AI 基本概念:阅读相关资料熟悉 AI 的术语和基础概念,了解其主要分支以及它们之间的联系,浏览入门文章了解 AI 的历史、应用和发展趋势。 2. 开始 AI 学习之旅:在相关的学习路径中找到为初学者设计的课程,通过在线教育平台(如 Coursera 、 edX 、 Udacity )按照自己的节奏学习,推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:根据自己的兴趣选择特定的模块(如图像、音乐、视频等)进行深入学习,掌握提示词的技巧。 4. 实践和尝试:在理论学习之后进行实践,尝试使用各种产品做出作品,分享实践成果。 5. 体验 AI 产品:与 ChatGPT 、 Kimi Chat 、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 此外,对于纯小白开发应用,比如通过 Claude 和人类导师的帮助用 Unity 开发小游戏,需要将任务拆解到足够小,针对性地设计学习路径,并密切关注随时解决遇到的问题。小小的任务,AI 可以胜任、非常耐心地指导,但最好有人类导师一开始把任务拆解好,并随时从坑里捞人。
2025-03-04
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
介绍一下AI视频的基础知识
以下是关于 AI 视频的基础知识: 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词 AI:即人工智能。 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习:一种参照人脑的方法,具有神经网络和神经元,因层数多而称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 LLM:大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-04-12
AI的基础知识了解
以下是关于 AI 基础知识的介绍: AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义以及它们之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:了解其基本概念。 评估和调优: 性能评估:知道如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等基本结构。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品并分享作品。 体验 AI 产品:与如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-04-09
我想从零基础学习成为一名ai产品经理,我该学习哪些知识内容,请把这些知识内容做个排序。
以下是从零基础学习成为一名 AI 产品经理所需学习知识内容的排序: 1. 入门级: 通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:对某一领域有认知,根据需求场景选择解决方案,利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 商业化研究路径:熟悉行业竞争格局与商业运营策略。 3. 落地应用: 有一些成功落地应用的案例,产生商业化价值。 同时,AI 产品经理还需要具备以下技能和知识: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,能准确评估某些功能的技术可行性。 4. 把握产品发展方向:了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力:发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力:掌握相关知识,提升数据分析能力。 此外,了解技术框架,对技术边界有认知,关注场景、痛点、价值也是很重要的。
2025-04-08
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
零基础小包AI学习路径
以下是为零基础的您提供的 AI 学习路径: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,像二师兄这样的案例也可供您参考。二师兄在二月因七彩虹售后群老哥的分享,要了 SD 秋叶安装包,下载了教学视频,迈出 AI 学习的第一步。三月啃完 SD 的所有教程并开始炼丹,四月尝试用 GPT 和 SD 制作图文故事绘本、小说推文的项目,五月加入 Prompt battle 社群,开始 Midjourney 的学习。 如果您是零基础小白,还可以: 找网上的基础课程进行学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 利用一些练手的 Prompt 工具。
2025-03-30