Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的

Answer

以下是一些在企业内部落地应用 AI 大模型工具的实践案例:

  1. 阿里云百炼:
    • 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
    • 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。
  2. 达摩院:
    • AI 模特(虚拟换装):支持虚拟换装、姿态编辑。
  3. 电商零售:
    • 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。
  4. 泛企业:
    • VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。
  5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
Content generated by AI large model, please carefully verify (powered by aily)

References

DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

大模型具有强大的语言理解和生成能力,但也存在一定的局限性,例如:无法回答私有领域问题(如公司制度、人员信息等);无法及时获取最新信息(如实时天气、比赛结果等);无法准确回答专业问题(如复杂数学计算、图像生成等)。为了提升用户体验和增强业务竞争力,越来越多的企业会构建AI助手,以便全天候(7x24)回应客户咨询。在阿里云上,只需几分钟即可构建一个AI助手,并发布到网站、钉钉或微信公众号中。适用于以下客户场景:有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务缺少技术人员开发大模型问答应用智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。外部能力指的是大模型本身不具备的功能,例如实时信息获取、回答私有领域问题等。您可以在百炼控制台通过零代码的方式创建智能体应用,并将外部能力集成到应用中,从而解决您的具体业务需求。梦飞老师之前在社群内直播的时候对对话型机器人有比较深的理解了,大家也可以回顾一下之前的私域营销的Bot。智能体应用的典型场景1.私有领域知识问答:您只需准备好相关知识库文件,就可以在百炼控制台快速创建一个私有领域知识问答应用,应用场景包括公司制度、人员信息等。2.个性化聊天机器人:百炼提供了长期记忆功能,可以保存关键历史对话信息,从而提供个性化的聊天体验。平台还集成了夸克搜索和图像生成等插件,进一步扩展了聊天机器人的功能。3.智能助手:通过引入RAG(检索增强生成)能力、长期记忆和自定义插件等功能,您可以构建一个智能助手,帮助提升工作效率,如处理邮件、撰写周报等。

DAY2 - 更好用的文本知识库应用跟学,快速上手阿里云百炼

AI客服vs.人工客服:优劣势对比要想高效解决用户问题,客服系统必须具备一个结构清晰、全面的FAQ库。例如,在订票平台中,基于用户的账号信息或购票路径,提前呈现用户可能遇到的问题及对应解答,这比等待用户逐一选择问题更为高效。FAQ库不仅需要覆盖常见问题,还应根据实际场景进行动态更新,确保系统的响应能力。下面列举订票平台搭建FAQ的几种视角(内容不全,抛砖引玉)原文可以参考:https://www.woshipm.com/ai/6131879.html回顾一下我们昨天的工作流:您的商城有顾客来购买冰箱,下面是一个常规流程:1.前台会询问顾客希望购买什么,并将顾客带到商店售卖冰箱区域,并有对应商品导购来服务。2.导购向顾客询问想要什么样的冰箱,以及相关预算。3.导购根据信息将合适的冰箱推荐给顾客,并促成购买。类似的,您可以通过百炼的Assistant API构建一个Multi-Agent架构的大模型应用,实现与用户主动提问,搜集必要信息的智能导购。[heading3]企业客户实践案例[heading3]内部业务助手[content]通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助RAG智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供UID并通过白名单进行开启。阿里云内部产品助手:

DAY1 - 必须了解的企业级AI应用开发知识点

看完模型能力之后,你会不会发现原来AI能在千行百业中能做的怎么能有这么多???接下来,我们进入到“应用广场”中,去看一些已经相对成熟的案例。下面简单讲几个例子:[heading5]2.2.1 AI模特(虚拟换装)[content]大家也可以直接在达摩院里面直接进行测试:https://damo-vision.com/?spm=5176.29779342.d_app-market.6.62e929a4w3xGCR支持虚拟换装、姿态编辑。[heading5]2.2.2电商零售推广文案写作[content]通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为您的营销活动和宣传文案提供灵感和文案写作支持。输出示例:[heading5]2.2.3泛企业VOC挖掘[content]泛企业VOC挖掘,是一个面向各类企业的VOC标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的VOC数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。输出示例:[heading5]2.2.4通义晓蜜[content]基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。输出效果:

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
有没有那种可以模仿抖音百万博主爆款文案的写作风格以及写作模板的AI
以下是一些关于模仿抖音百万博主爆款文案写作风格和模板的 AI 相关内容: 1. 画小二:Coze 工作流提供了一系列针对抖音热门视频转小红书图文的配置,包括整体结构图、各模块参数配置(如开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 模块等)的详细说明。同时,在小红书标题和正文写作方面,具备多种技能,如采用二极管标题法创作吸引人的标题,产出口语化、简短且含适当 emoji 表情和 tag 标签的 200 字左右正文。 2. 夙愿:介绍了使用 GPT 模仿创作内容的万能思路,特别是在 Prompt 编写中的数据清洗部分。指出对标博主的文案模板化,数据清洗有人工和自动两种方法,推荐使用 GPT4 的数据分析器进行自动清洗。 3. AIIP 共学模版自媒体全域运营:包含对标笔记的详细信息,如标题、作者、详情、账号、主页、封面、视频、文案等。以“Deepseek+即梦,包装设计步骤来啦”为例,介绍了利用 Deepseek 和即梦进行设计的步骤,并表示希望对用户有帮助。
2025-04-11
如何制作一个只要输入主题内容,就可以制作文案和视频的工作流
以下是制作一个只要输入主题内容,就可以制作文案和视频的工作流的方法: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建,并写了教程供大家参考。 先看效果: 可查看 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 Coze 智能体创建: 1. “开始”节点: 共有 4 个输入变量,分别为:idea_txt(主题观点)、left_to_txt(画面左上角的文字)、right_to_txt(画面右上角的文字)、img_prmpot(画面中间图片生成提示词)。注意这 4 个变量名称要和智能体中提示词的变量对应一致,方便接收用户传入的参数。 2. “大模型”节点: 使用 DeepSeek R1 模型,提示词要求不复杂,说出需求即可,格式可用大白话说出来。 3. “文本”节点: 为将文案分句,每一句要生图、配音。选择按“句号”分句,具体可根据文案格式选择不同方式。 4. “图像生成”节点: 使用官方插件,模型选“LOGO 设计”。若要生成全景图,此插件效果欠佳,建议选其它插件。 5. “抠图节点”: 将上个节点生成的图片进行抠图。
2025-04-09
如何搭建小红书文案生成系统
搭建小红书文案生成系统可以参考以下步骤: 1. 规划阶段: 概括关键任务并制定策略,明确任务目标和实施方式。 将整体任务细分为易于管理的子任务,如生成爆款标题、生成配图、生成发布文案等,并确立它们之间的逻辑顺序和相互依赖关系。 为每个子任务规划具体的执行方案。 2. 利用自然语言构建 DSL 并还原工作流:可以通过口喷需求的方式,在 01 阶段辅助快速生成一个工作流程原型,然后再进行修改完善,降低用户上手门槛。 3. 参考成功案例:例如“小众打卡地”智能体,其搭建思路重点包括录入小红书相关文案参考知识库,通过文本模型组成搜索词进行搜索,从搜索到的网页链接中提取相关 url 并滤除需要安全认证的网站,提取小众地点输出和相关图片,最后进行文案输出。 总之,搭建小红书文案生成系统需要明确目标和子任务,选择合适的工作流构建方式,并参考成功经验。
2025-04-04
coze上提取视频文案的插件有哪些?都是怎么调用的
以下是关于在 coze 上提取视频文案的插件及调用方法: 1. 进入 coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 2. 在插件的 URL 部分,填入通过 ngrok 随机生成的 https 的链接地址。 3. 配置输出参数和 message 输出。 4. 测试后发布插件。 需要注意的是: 1. 如果在生产环境中已有准备好的 https 的 api,可直接接入。 2. 本案例中使用的是 coze 国内版,且案例中的 ngrok 仅供娱乐,在生产环境中勿用。
2025-04-01
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
专门解决ai需求的问答
以下是关于专门解决 AI 需求的问答的相关内容: 关于我是谁: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互完成互动对话、信息获取、协助创作等任务。 使用方法: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 2. 在 WaytoAGI.com 的网站首页直接输入问题即可得到回答。 做问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 AI 商用级问答场景中让回答更准确: 要优化幻觉问题和提高准确性,需了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优。RAG(检索增强生成)由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息制作精确连贯的答案,通过检索模式为大语言模型生成提供更多信息,使答案更符合要求。 向量:可把向量想象成空间中的点位,每个词或短语对应一个点,系统通过比较点的距离快速找到语义接近的词语或信息。 Agentic AI 中的问答: 对于最简单的常识性问答,可在 CursorChat 中输入问题得到答案,其相对细节的优势是可在同一界面调用 OpenAI、Anthropic 及本机私有 AI 进行问答。此外,Cursor 作为编辑器,可方便收集沉淀问答结果为复用文档,在进行文本相关任务时还有奇妙用法,如翻译中文博客。
2025-03-26
数据问答的最佳实践
以下是关于数据问答最佳实践的相关内容: Databricks: Databricks 作为大数据领域的领先服务商,在 RAG 设计上有自身特点和优势。用户输入问题后,从处理好的文本向量索引获取相关信息,结合提示词工程生成回答。上半部分 Unstructured Data pipeline 采用主流 RAG 方法,下半部分 Structured Data Pipeline 是其特征工程处理流程,也是最大特点。Databricks 从专业大数据角度出发,在准确度较高的数据存储中进行额外检索,发挥在 Real Time Data Serving 上的优势。可见其在 GenAI 时代将强大的 Lakehouse 数据处理能力与生成式 AI 技术深度融合,构建一体化解决方案。 OpenAI: 从 OpenAI Demo day 的演讲整理所得,在提升 RAG 准确率的成功案例中,OpenAI 团队从 45%的准确率开始,尝试多种方法。包括假设性文档嵌入(HyDE)和精调嵌入等,但效果不理想。通过尝试不同大小块的信息和嵌入不同内容部分,准确率提升到 65%。通过 Reranking 和对不同类别问题特别处理,进一步提升到 85%。最终,结合提示工程、查询扩展等方法,达到 98%的准确率。团队强调模型精调和 RAG 结合使用的强大潜力,仅通过简单的模型精调和提示工程就接近行业领先水平。 Loop: 具有环状结构的 RAG Flow 是 Modular RAG 的重要特点,检索和推理步骤相互影响,通常包括一个 Judge 模块控制流程,具体可分为迭代、递归和主动检索三种。 迭代检索:对于一些需要大量知识的复杂问题,可采用迭代方式进行 RAG,如 ITERRETGEN。每次迭代利用前一次迭代的模型输出作为特定上下文帮助检索更相关知识,通过预设迭代次数判断终止。 递归检索:特点是明显依赖上一步并不断深入检索,通常有判断机制作为出口,需搭配 Query Transformation,每次检索依赖新改写的 Query。典型实现如 ToC,从初始问题通过递归执行 RAC 逐步插入子节点到澄清树中,达到最大数量有效节点或最大深度时结束,然后收集所有有效节点生成全面长文本答案回答初始问题。
2025-03-17
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建 OneAPI,用于汇聚整合多种大模型接口。 搭建 FastGpt,这是一个知识库问答系统,可放入知识文件,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat,将知识库问答系统接入微信,但建议先用小号以防封禁风险。 2. Coze: 知识库问答是其最基础的功能,利用了大模型的 RAG 机制(检索增强生成)。 RAG 机制先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 实现知识库问答功能需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传内容。 在设计 Bot 时添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地结合知识库返回的内容进行回答。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
微信智能客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例中通过创建 Bot 创建。侧边导航栏一直有创建 Bot 的方式,仅主页有 Coze Assistant。两者区别在于: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,发布流程较复杂,下面是重新注册和解绑后重新配置的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-15
搭建在线知识库,在线客服
以下是关于搭建在线知识库和在线客服的相关内容: RAG 流程: 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。 离线数据处理的目的是构建知识库,知识会按照某种格式及排列方式存储在其中等待使用。 在线检索是利用知识库和大模型进行查询的过程。 以构建智能问答客服为例,了解 RAG 流程中的“是什么”与“为什么”同等重要。 创建智能体: 手动清洗数据创建知识库: 点击创建知识库,创建画小二课程的 FAQ 知识库。 知识库的飞书在线文档中,每个问题和答案以“”分割。 选择飞书文档、自定义,输入“”,可编辑修改和删除。 点击添加 Bot,可在调试区测试效果。 本地文档: 注意拆分内容以提高训练数据准确度。 以画小二课程为例,先放入大章节名称内容,再按固定方式细化处理每个章节。 发布应用:点击发布,确保在 Bot 商店中能搜到。 开发:GLM 等大模型外接数据库: 项目启动:包括 web 启动(运行 web.py,显存不足调整模型参数,修改连接)、API 模式启动、命令行模式启动。 上传知识库:在左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服等。MOSS 同理。
2025-04-13
智能微信客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例通过创建 Bot 创建。侧边导航栏一直有创建 Bot 方式,仅主页有 Coze Assistant。两者区别为: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮教技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,是本次分享重点,发布较复杂,下面是重新注册和解绑后重新配置微信客服的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-10
智能客服有什么特别好的产品形态?
智能客服的产品形态具有多样性,以下为您介绍: 1. 传统智能客服:但在 LLM 时代发展不佳,部分企业如 xxx 欠薪、解散团队或转向出海客服方向。这与智能客服行业的属性有关,其分为智能部分和客服部分,智能部分基于 NLP 技术进行 AI 对话管理,客服部分包括传统客服坐席、内部数据查询台、AI 与 IM 对接等。然而,企业对客服效果极为看重,且智能客服企业难以获取关键数据,导致很多采取本地部署,吃力不讨好且难有积累。 2. 基于 LLM 的智能客服:如 GPT 智能客服,通过将 FAQ 上传到知识库,让其具有客服应答能力。GPTs 作为 GPT 的一种 ID 账号形态,开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action),具有对话流畅、多观点融合、答案准确等特点,但不太擅长推理计算。 3. 特定功能的智能客服:例如帮助企业快速建立产品智能客服体系的方案,通过用户意图识别、知识库检索答案、AI 大模型总结输出答案等方式,提供全面的 AI 客服解决方案,提高回答准确率,降低企业商用 AI 客服门槛。还有如自动化处理和分析商品负面评论、为中小型消费品企业提供销售订单管理等特定功能的智能客服。
2025-04-10
有没有AI客服呢帮我解决天猫店铺的客服问题
天猫店铺有可用的 AI 客服,例如阿里的“小蜜”。在去年双 11 购物节,小蜜累计服务 4.1 亿次咨询,占比 85%,仅复杂纠纷转人工,用户满意度并未因是 AI 而下降,反而因回复快提升。此外,电商领域还有其他类似的 AI 客服应用,如京东推出的智能客服“JIMI”,每天处理数百万咨询,问题解决率超过 90%,使得京东客服团队规模缩小,有效分流了工作量。亚马逊的“智能客服代理”能通过对话 API 访问客户订单等数据,帮助顾客查询物流、办理退货,在上季度独立处理了超过 50%的客户请求。抖音小店客服也引入了 AI 回复,提升了商家客服响应速度。
2025-04-09
智能客服
以下是关于智能客服的相关内容: 在开源 AI 社区中,通过 Coze 开发了社群运营机器人作为智能客服。 知识库问答方面:将社区长期积累的文章和资料喂给机器人学习,它能通过 RAG 机制匹配用户问题给出准确稳定答案。解决了如“AGI 是什么”“什么是 ChatGPT”等基础问题,提高了效率,保证了答案的准确性和一致性。此外,机器人还会基于问题给出相关延伸阅读链接,鼓励用户主动学习,影响用户学习方式。 定时推送方面:能将活动信息和社区动态定时推送给用户,避免用户因不在电脑前错过重要活动。提前设置好推送任务,就能精准送达。 关于 GPT 智能客服部署:GPTs 是 GPT 的一种 ID 账号形态,类似微信公众号,用户可开发自己垂类应用。开放门槛低,基本是 0 代码,开发方式包括自然语言(prompt)、知识库(knowledge)、第三方 API 对接(Action)。其实现目前最强的智能客服,具有对话流畅、多观点融合、答案准确等特点,不太擅长推理计算。实现原理是将 FAQ 上传到知识库,让 GPTs 具有客服应答能力。猜测类似检索增强生成技术(RAG),将知识库和问题一起做 embedding,扔给 LLM 作答。
2025-04-08