Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

pytorch

Answer

PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。

在本地安装 ComfyUI 时,安装 PyTorch 有以下步骤:

  • Windows 用户:建议在有 NVIDIA 显卡的电脑上使用。首先下载 Miniconda3,然后输入相应命令安装 Miniconda3,最后安装 PyTorch 的 nightly 版本。
  • Mac 用户:安装需要根据电脑的芯片不同输入不同的代码。首先下载 Miniconda3,然后输入相应命令安装 Miniconda3,最后不管是 M 芯片还是 x86 都复制相应代码到 Terminal 进行安装。

在 Python 的应用中,PyTorch 在深度学习方面发挥着重要作用。

从生成式 AI 季度数据报告 2024 年 1 - 3 月来看,2023 年 4 月 PyTorch 以 531.0 万的访问量位居第一,占赛道月总访问量的 27.8%;2024 年 3 月,PyTorch 以 379.0 万的访问量继续保持第一,占赛道月总访问量的 18.1%。近一年赛道单月访问量增加了 190.0 万,年增长率为 9.9%,但 PyTorch 的访问量减少了 152.0 万。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何在本地安装 ComfyUI

如果你已经安装过SD WebUI,那你可以跳到第二步。首先你需要打开系统Terminal,一般可以通过系统搜索即可找到。Mac和Windows上是长这样的。Windows上因为版本不同,有可能跟我的截图不一样,只要名字对就可以了:然后打开Terminal,不管是什么系统,你应该都会看到类似的界面,可能UI颜色不一样,但一定是一串字符后有一个闪烁的光标:此时不同的系统需要输入不同的命令。[heading4]Windows用户[content]Windows用户我建议你在有NVIDIA显卡的电脑上使用。[heading5]下载Miniconda3[content]第一步输入以下命令:[heading5]安装Miniconda3[content]下载完后,继续输入以下代码,安装Miniconda3:[heading5]安装pytorch[content]安装pytorch的nightly版本即可。输入以下命令:[heading4]Mac用户[content]Mac的安装需要根据你电脑的芯片不同,输入不同的代码。[heading5]下载Miniconda3[content]第一步输入以下命令:[heading5]安装Miniconda3[content]下载完后,继续输入以下代码,安装Miniconda3:在安装Miniconda 3的时候,你会看到「Please,press ENTER to continue」,此时你需要按下回车键。然后会进入阅读协议环节,此时你需要一直按回车,直到显示「Do you accept the license terms?」,然后输入yes,并按下回车。最后会让你确认安装的目录,基本可以不用改,按下回车即可。如果显示「Thank you for installing Miniconda3!」就意味着你完成了安装。[heading5]安装pytorch[content]最后不管是M芯片还是x86都复制以下代码到Terminal:这一步因为需要下载安装一些东西,所以可能会比较久,请耐心等待。当显示「Successfully installed XXXXX」,或者一连串的「Requirement already satisfied」就意味着你完成了所有的安装。

什么是python

NLTK:自然语言处理工具包(NLTK)是Python中用于自然语言处理的库,提供了文本处理库、分类、解析、标记、语义推理等功能。spaCy:spaCy是一个高性能的自然语言处理库,专注于提供快速且实用的NLP工具。[heading3]深度学习[content]PyTorch:PyTorch是由Facebook的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名。它特别适合研究和快速原型开发。Caffe:Caffe是一个深度学习框架,主要用于图像和视频分析。它以其快速和模块化的特点而受到欢迎。[heading3]机器学习[content]scikit-learn:scikit-learn是Python中用于机器学习的一个库,提供了许多常用的机器学习算法,如线性回归、决策树、支持向量机等。TensorFlow:TensorFlow是由Google开发的开源机器学习库,主要用于深度学习。它提供了强大的计算能力和灵活性。Keras:Keras是一个高级神经网络API,可以运行在TensorFlow、CNTK或Theano之上。它使得构建和训练深度学习模型变得简单。

生成式AI季度数据报告_2024Q1.pdf

• 2023年4月:月访问量为1906.8万,pytorch以531.0万的访问量位居第一,占赛道月总访问量的27.8% • LangChain和Pinecone分别以267.0万和197.0万的访问量位列二、三,分别占赛道月总访问量的14.0%和10.3%4.1开发者工具辅助榜单23年4月访问量Top10aiwatch.ai23年4月~24年3月月访问量增量Top10• 2024年3月:月访问量略微增长至2096.8万,pytorch以379.0万的访问量继续保持第一,占赛道月总访问量的18.1%。LangChain和FlutterFlow AI Gen分别以356.0万和325.0万的访问量位列二、三,分别占赛道月总访问量的16.9%和15.5%月访问量变化情况•近一年赛道单月访问量增加了190.0万,年增长率为9.9%。pytorch的访问量减少了152.0万,而LangChain和FlutterFlow AI Gen的访问量分别增长了89.0万和135.0万,占整个赛道变化的-80.0%和71.1%•开发者工具赛道的增长可能与开发社区的扩大和技术的不断进步有关• pytorch的访问量下降可能是由于竞争产品的崛起,而LangChain和FlutterFlow AI Gen可能因其创新的功能或服务吸引了更多开发者23年4月~24年3月月访问量减量Top5数据来源:Similarweb,Visit,单位:万变化公式:3月/2月-1 *100% 139代码工具分类aiwatch.ai代码工具图谱

Others are asking
什么是pytorch
PyTorch 是由 Facebook 的人工智能研究团队开发的深度学习库,以其灵活性和易用性而闻名,特别适合研究和快速原型开发。在一些应用场景中,如 AI 音乐处理,需要对应 CUDA 对应的支持版本才能正确运行。目前 CUDA 官网最新的版本是版本,如 cuda12.1 实测可以匹配 cuda 12.4。下载完后默认安装即可。
2024-12-10
如何卸载pytorch
在 Mac 系统中卸载 PyTorch 的步骤如下: 1. 以您想要操作的目录为例,在终端中输入 `cd Documents/ComfyUI`,导航到 ComfyUI 目录。 2. 使用以下命令创建并激活 Python 虚拟环境: `python3 m venv venv` `source venv/bin/activate` 3. 执行以下命令卸载 PyTorch:`pip3 uninstall torch torchvision torchaudio`
2024-12-02
pytorch跟cuda之间的关系
PyTorch 与 CUDA 之间存在密切的关系。在 AI 相关的应用中,如果使用 GPU 来处理数据以提高运算速度,通常会用到 CUDA 技术。而 PyTorch 要想利用 CUDA 进行加速运算,必须对应 CUDA 支持的版本,否则程序无法正确运行。 例如,目前 CUDA 官网最新的版本是 12.4,需要找到配套的 PyTorch 版本。对于 CUDA 12.1,实测可以匹配 CUDA 12.4。如果没有 N 卡,也可以用 CPU 代替 CUDA 进行运算处理,但速度会相对较慢,并且在代码中需要做相应调整。
2024-12-01
NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37. If you want to use th
您好,出现“NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation. The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 sm_80 sm_86 sm_90 compute_37.”这种情况,意味着您所使用的 NVIDIA 显卡的 CUDA 计算能力(sm_120)与当前安装的 PyTorch 版本不兼容。当前安装的 PyTorch 支持的 CUDA 计算能力为 sm_37 至 sm_90 以及 compute_37 。您可能需要重新安装与您显卡 CUDA 计算能力相匹配的 PyTorch 版本,或者升级您的显卡驱动程序来解决此兼容性问题。
2024-11-30
Pytorch cuda 对应的关系
在使用 PyTorch 与 CUDA 时,需要注意它们的对应关系。以 Windows 为例,如果您使用 GPU 来处理音频,可以用 CUDA 提速。目前 CUDA 官网最新的版本是 12.4(https://developer.nvidia.com/cudadownloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local),对应找到配套的 PyTorch 版本,例如 CUDA 12.1 实测可以匹配 CUDA 12.4。下载完成后默认安装即可。一定要确保 PyTorch 对应 CUDA 支持的版本,否则程序无法正确运行。如果没有 N 卡,可以用 CPU 代替 CUDA 进行运算处理,但速度会慢一些,代码中可以做相应调整。
2024-11-29
AI入门的pytorch代码,举例子
PyTorch 是一个流行的开源机器学习库,广泛用于计算机视觉和自然语言处理等应用。以下是使用 PyTorch 进行简单线性回归的入门代码示例: ```python import torch import torch.nn as nn 假设我们有一些数据点 x_train = torch.tensor y_train = torch.tensor 定义一个简单的线性模型 class LinearRegressionModel: def __init__: super self.linear = nn.Linear 1个输入特征,1个输出特征 def forward: return self.linear 实例化模型 model = LinearRegressionModel 定义损失函数(均方误差) criterion = nn.MSELoss 定义优化器 optimizer = torch.optim.SGD 训练模型 num_epochs = 100 for epoch in range: 前向传播 outputs = model loss = criterion 反向传播和优化 optimizer.zero_grad 清除之前的梯度 loss.backward 反向传播,计算当前梯度 optimizer.step 根据梯度更新参数 if % 10 == 0: print 测试模型 with torch.no_grad: 测试时不需要计算梯度 predicted = model print 打印最终参数 print print ``` 这段代码首先导入了必要的 PyTorch 模块,然后创建了一些简单的输入数据 `x_train` 和对应的目标输出 `y_train`。接着定义了一个线性回归模型 `LinearRegressionModel`,该模型包含一个线性层 `nn.Linear`。然后定义了损失函数 `MSELoss` 和优化器 `SGD`。 在训练循环中,我们执行了前向传播、计算损失、执行反向传播并更新模型参数的步骤。每训练10个周期,我们打印一次当前的损失值。训练完成后,我们使用 `with torch.no_grad` 语句测试模型的预测结果,并打印出模型学到的权重和偏置。 这是一个非常基础的 PyTorch 入门示例,适合初学者理解 PyTorch 的基本概念和操作流程。
2024-06-11