Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ComfyUI中的放大插件

Answer

ComfyUI 中的放大插件相关知识如下:

  • 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readme-ov-file 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 U-Net 中进行低噪声扩散处理)。U-Net 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。
  • 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。
  • Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 Eva-CLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUi NNLatentUpscale潜空间放大

通过使用神经网络对潜在空间进行放大,而无需使用VAE进行解码和编码。此方法比传统的VAE解码和编码快很多,并且质量损失很小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readme-ov-file潜在表示(latent representation)是神经网络处理图像时生成的压缩版本,它包含了图像的主要特征信息。相比于直接处理高分辨率图像,处理潜在表示更快且资源消耗更少。1.生成潜在表示:图像被模型压缩成潜在表示。生成一个低分辨率的图像2.放大潜在表示:利用神经网络对潜在表示进行放大。3.生成高分辨率图像:将放大的潜在图像反馈到稳定扩散U-Net中,进行低噪声扩散处理,从而修复成高分辨率图像。此节点旨在用于一种工作流程中,其中初始图像以较低分辨率生成,潜在图像被放大,然后将放大的潜在图像反馈到稳定扩散u-net中进行低噪声扩散处理(高分辨率修复)。U-Net是一种特别的神经网络结构,通常用于图像处理,尤其是图像分割。它的工作方式可以简单理解为:1.编码部分:逐步缩小图像,从中提取重要特征(类似于提取图片的精华)。2.解码部分:逐步放大图像,把提取的特征重新组合成高分辨率的图像。3.跳跃连接:在缩小和放大的过程中,保留一些细节信息,使最终生成的图像更清晰。这种结构使得U-Net能够在放大图像的同时,保持细节和准确性。

8月13日ComfyUI共学

[heading2]总结关于图像生成中分辨率和放大方式的讨论不同模型的适合分辨率:SD1.5通用尺寸为512乘512或512乘768,SDXL基础尺寸为1024乘1024,生成图像前要选对尺寸,否则效果差。通过浅空间缩放放大图像:直接对浅空间图片进行编辑放大,然后进行第二次采样和高清处理,若直接放大不解码会很模糊,需用较低的采样系数增加细节。使用外置放大模型放大图像:可使用外置放大模型对图像进行放大,默认放大4倍,可通过resize image节点调整到想要的尺寸,放大后要送回编码器进行采样处理。图像对比节点:图像对比节点名为compare,需安装相关包才能使用,可用于对比最初和最终的图片。算力和资源获取:飞翔提供了50个小时的算力时间,可在飞书群填问卷获取,分享模型较少可提建议,相关文档在飞书和公众号中。AI绘图相关技术与工具的介绍及交流公众号文章包含AGI相关信息:通往AGI之路的公众号最新文章中有相关信息,内置工作流和启动器方便,Mac系统因无CUDA生态不太好用。推荐提示词辅助插件:如SDXL的S1XL style,可对提示词进行风格化扩充,还有能翻译提示词的插件,如沙拉查词、沉浸式翻译等。解释CLIP和CFG的区别:CLIP用于解析提示词,将其转化为模型可理解的向量,CFG是提示词对画面影响的强度,即提示词引导系数。搭建带Lora的图生图工作流:介绍了加载模型、设置clip跳过层、处理图像、连接采样器和解码器等步骤,并展示效果。

Comfyui PuLID人物一致

节点插件PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUImodel:使用预训练的基础文本到图像扩散模型,如Stable Diffusion。pulid:加载的PuLID模型权重,定义ID信息如何插入基础模型。eva_clip:用于从ID参考图像中编码面部特征的Eva-CLIP模型。face_analysis:使用InsightFace模型识别和裁剪ID参考图像中的面部。image:提供的参考图像用于插入特定ID。method:选择ID插入方法,如"fidelity"(优先保真度)、"style"(保留生成风格)和"neutral"(平衡两者)。weight:控制ID插入强度,范围为0到5。start_at和end_at:控制在去噪步骤的哪个阶段开始和停止应用PuLID ID插入。attn_mask:此选项用于提供灰度掩码图像,以控制ID自定义的应用位置,但并不是必需输入,而是可选输入。Advanced Node:提供了高级节点,可以通过调整fidelity滑块和projection选项进行更精细的生成调优。比如,ortho_v2和fidelity:8等价于标准节点的fidelity方法,而projection ortho和fidelity:16等价于style方法。

Others are asking
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
找一下翻译插件
以下为您介绍一些翻译插件和方法: 1. 提示词翻译副本 Alekpet: 插件地址:安装后重启 ComfyUI 即可。 将 CLIP 文本编码器转换为输入,连接翻译文本节点即可使用。 链接:https://github.com/kingzcheung/ComfyUI_kkTranslator_nodes 2. 提示词翻译副本 Prompt_Translate_to_English: 用的百度翻译 API 方法如下: 下载节点压缩包,并将它放在 custom_nodes 文件夹。 去百度翻译 Api 和登记册开发人员的帐户中得到您的 appid 和 secretKey。 百度翻译平台地址:https://fanyiapi.baidu.com/manage/developer 。 打开文件 config.py 在记事本/其他编辑,填您的 secretKey 在引号的 secretKey ="",保存文件重启 Comfy 即可。 3. 翻译一份英文 PDF 完整地翻译成中文的方法: DeepL(网站): 点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件): 安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 calibre(电子书管理应用): 下载并安装 calibre,并安装翻译插件「Ebook Translator」。 谷歌翻译(网页): 使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页): 点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2025-04-08
ai和office软件结合的插件有哪些
以下是一些 AI 和 Office 软件结合的插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Office 软件中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
coze上提取视频文案的插件有哪些?都是怎么调用的
以下是关于在 coze 上提取视频文案的插件及调用方法: 1. 进入 coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 2. 在插件的 URL 部分,填入通过 ngrok 随机生成的 https 的链接地址。 3. 配置输出参数和 message 输出。 4. 测试后发布插件。 需要注意的是: 1. 如果在生产环境中已有准备好的 https 的 api,可直接接入。 2. 本案例中使用的是 coze 国内版,且案例中的 ngrok 仅供娱乐,在生产环境中勿用。
2025-04-01
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
midjourney图怎么 放大
在 Midjourney 中,放大图像的方法如下: 放大(Upscale)将图像尺寸加倍: 精细放大(Subtle):放大图像同时尽量保持原样。 创意放大(Creative):在放大的同时会调整或改变图像中的某些细节。 操作时,您可以点击相应的按钮进行放大。例如,在生成的图像中,点击上面的 U 1 4 即可放大一张图。 另外,使用当前默认模型版本的中途图像的默认尺寸为 1024 x 1024 像素。您可以使用 upscale 工具将文件大小增加到 2048 x 2048 或 4096 x 4096 像素。在网络浏览器中打开 Midjourney 图像,或从 Midjourney.com 下载它们以获得最大文件大小。 需要注意的是,如果没看到放大相关的按钮,可能有以下原因: 1. 该图像已经在 Discord 中生成最满意的一张,不可再放大。 2. 在 More options 文字里没打上相应的对勾。
2025-03-21
图片放大
图像放大主要通过以下几种方式实现: 1. 图像高清修复流程: 输入原始图像:添加Load Image节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用Iceclear/StableSR等模型进行修复并2倍放大,搭配Stable SR Upscaler模型和合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)等。 图像高清放大:对第一次放大修复后的图像进行二次修复,使用realisticVision底膜,搭配tile ControlNet提升画面细节感,选择合适的高清放大模型。 2. 利用插件和脚本: Tiled Diffusion中的MultiDiffusion方案适合图像的重绘、风格迁移和放大等功能,其中的滑块可调节分块大小、重叠像素和同时处理的分块数量。 Tiled VAE可降低VAE编解码大图所需的显存字节,分块大小可根据电脑情况调节。 3. 辅助工具: 本地工具:https://www.upscayl.org/download SD放大:扩散模型可增加更多细节 开源工作流: 相关网站: stability.ai的https://clipdrop.co/tools 画质增强magnific遥遥领先:https://magnific.ai/ Krea https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯ARChttps://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/
2025-03-08
comfyui tile放大
以下是关于 ComfyUI tile 放大的相关内容: 文生图工作流搭建:先左键点住 CLIP 黄点向外拖,再拖出两个 CLIP 编码器,从条件处拉出采样器,连接正负提示词和模型,还需 VE 解码器和 VE 模型,若模型无 VAE 则需加载器。 浅空间图像放大:从第一个采样器向右拉,点击按系数缩放将 later 调成 2 倍,复制采样器、VE 解码器并连接处理过的 later。 Confii 图像放大操作:从第一个采样器开始,通过一系列操作如添加 Latin 节点、连接提示词和模型、连接 VE 解码器等,并设置重绘幅度、缩放系数等参数来实现图像放大。参数设置方面,重绘幅度(降噪)决定图像改变程度,数值越高与原始图像差别越大;缩放系数默认 1.5,可调整为 2。 在 SD 中,可使用 Ultimate SD upscale 插件放大,也可在图生图中进行放大,重绘幅度设置为 0.6。放大时打开 Tiled Diffusion,方案选择 MultiDiffusion,放大算法选择 RESRGAN 4x+Anime6B,放大 2 倍。同时启用 Tiled VAE 和 controlnet 插件的 tile 模型,给图片添加细节。
2025-03-03
帮我找一些可以无损放大图片的ai 产品
以下是一些可以无损放大图片的 AI 产品: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 此外,以下是图片增强方面的 AI 产品排名数据: 4 月访问量(万 Visit): 1. Cutout pro 图片增强 1608 相对 3 月变化 0.023 2. Upscale media 图片增强 432 相对 3 月变化 0.073 3. ZMO AI 图片增强 338 相对 3 月变化 0.161 4. Neural.love Art 图片增强 283 相对 3 月变化 0.072 5. Topaz Photo AI 图片增强 247 相对 3 月变化 0.047 6. VanceAI 图片增强 247 相对 3 月变化 0.078 7. bigjpgAI 图片无损放大 图片增强 203 相对 3 月变化 0.06 8. Img Upscaler 图片增强 203 相对 3 月变化 0.042 9. Let's Enhance 图片增强 167 相对 3 月变化 0.046 10. Akool 图片增强 122 相对 3 月变化 0.173 6 月访问量(万 Visit): 1. Cutout pro 图片增强 1408 相对 5 月变化 0.082 2. Upscale media 图片增强 433 相对 5 月变化 0.029 3. Neural.love Art 图片增强 253 相对 5 月变化 0.137 4. Img Upscaler 图片增强 244 相对 5 月变化 0.032 5. VanceAI 图片增强 239 相对 5 月变化 0.077 6. ZMO AI 图片增强 221 相对 5 月变化 0.153 7. bigjpgAI 图片无损放大 图片增强 180 相对 5 月变化 0.109 8. Topaz Photo AI/Topaz Video AI 图片增强 170 相对 5 月变化 0.224 9. Let's Enhance 图片增强 150 相对 5 月变化 0.102 10. Akool 图片增强 142 相对 5 月变化 0.193
2025-02-24
放大图片
在 AI 绘画领域,放大图片有以下相关知识: Midjourney 中放大图片的方法: 使用 /imagine 命令生成低分辨率图像选项网格,每个图像网格下方的按钮可用于创建图像的变体、升级图像或重新运行最后一个 Midjourney Bot 操作。 U1U2U3U4 按钮将图像与图像网格分开,使用旧版 Midjourney 模型版本时,U 按钮会放大图像,生成所选图像的更大版本并添加更多细节。 重做(重新滚动)按钮重新运行作业。 V1V2V3V4V 按钮创建所选网格图像的增量变化。 制作变体:创建放大图像的变体并生成包含四个选项的新网格。网页:在上打开图库中的图像,最喜欢的:标记您最好的图像,以便在 Midjourney 网站上轻松找到它们。 直接消息:如果general 或newbie 频道进展太快,Midjourney 订阅者可以在其 Discord 直接消息中与 Midjourney 机器人进行一对一的合作。 使用 Midjourney Vary Region 编辑器选择并重新生成放大图像的特定部分。Vary按钮会在中途图像放大后出现,区域差异由原始图像中的内容和您选择的区域决定,与 Midjourney 模型版本 V5.0、V5.1、V5.2、niji 5 兼容。具体操作步骤如下: 1. 生成图像:使用命令创建图像/imagine。 2. 升级图像:使用 U 按钮放大所选图像。 3. 选择不同区域:点击?️Vary按钮,打开编辑界面。 4. 选择要再生的区域:选择编辑器左下角的手绘或矩形选择工具,选择要重新生成的图像区域。注意选择的大小会影响结果,更大的选择为 Midjourney 机器人提供更多空间来生成新的创意细节,较小的选择将导致更小、更微妙的变化。无法编辑现有选择,但可以使用右上角的撤消按钮撤消多个步骤。 5. 提交您的工作:单击 Submit→按钮将您的请求发送到 Midjourney Bot。 6. 查看结果:中途机器人将处理您的作业并在您选择的区域内生成一个新的变化图像网格。 Stable Diffusion 中放大图片的相关设置: 文生图是仅通过正反向词汇描述来发送指令。在进行文本描述时,分为内容型提示词和标准化提示词,内容型提示词主要用于描述想要的画面。 采样迭代步数通常数值控制在 20 40 之间,步数越高绘画越清晰,但绘画速度也会越慢。 采样方法一般常用的为:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。有的模型会有指定的算法,搭配起来更好用。 将比例设置为 800:400,注意尺寸并非越大越好,模型的练图基本上都是按照 512x512 的框架去画,高宽比尽量在这个数值附近。太大的数值比如 1920x1080,会使 AI 做出很奇怪的构图。若想要高清的图,可以同时点选高清修复来放大图像倍率,高宽比主要是控制一个画面比例。
2025-01-15
图片放大
以下是关于图片放大的相关信息: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: stability.ai 的:https://clipdrop.co/tools 画质增强: https://magnific.ai/ https://www.krea.ai/apps/image/enhancer https://imageupscaler.com/ https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 https://imglarger.com/ https://letsenhance.io/ http://waifu2x.udp.jp/ 在 SD 中进行图片放大: 使用过插件、脚本和后期处理,原理相同,好坏需尝试,因为 AI 生图有随机性。 在 Tiled Diffusion 中,MultiDiffusion 方案适合图像重绘、风格迁移和放大等功能。 四个滑块代表分块大小、分块之间的重叠像素和同时处理的分块数量,数值越大效果越好、速度越快,数值越小占用显存越小,一般保持默认,重叠像素大小建议使用 MultiDiffusion 时选择 32 或 48,使用 Mixture of Diffusers 选择 16 或 32。 Tiled VAE 可极大程度降低 VAE 编解码大图所需的显存字节,分块大小根据电脑情况调节,数值越小占用显存越低。 生成 512x512 的图片,发送到图生图进行重绘,选择熟悉的放大算法和所需的放大倍数,重绘幅度设置为 0.35,放大算法下面的噪声反转可在重绘前对原图像进行噪声图反推,让放大的图片更接近原图。 在 SD 中文生图的相关提示词: Stable Diffusion 的生成方式主要分为文生图和图生图两种,文生图仅通过正反向词汇描述发送指令,图生图除文字外还可给 AI 参考图进行模仿(垫图)。 文本描述分为内容型提示词和标准化提示词,内容型提示词用于描述想要的画面,例如:1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面(使用翻译软件翻译成英文)。 采样迭代步数通常控制在 20 40 之间,采样方法常用的有:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。 比例设置为 800:400,高宽比尽量在 512x512 数值附近,太大的数值会使 AI 构图奇怪,可同时点选高清修复来放大图像倍率。
2024-12-20