Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

是否有《普通人如何抓住deepseek红利》清华大学链接

Answer

以下是关于《普通人如何抓住 DeepSeek 红利》的相关链接:

  • 清华大学新闻与传播学院撰写的报告:https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq
  • 相关 PPT 课件:https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb (由清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室、@新媒沈阳团队的陶炜博士生团队制作)
Content generated by AI large model, please carefully verify (powered by aily)

References

2月14日 社区动态速览

《[清华大学新闻与传播学院:普通人如何抓住DeepSeek红利](https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq)》本报告由清华大学陶炜博士生团队撰写,探讨普通人如何利用DeepSeek抓住AI红利。报告详细介绍了DeepSeek的应用场景,包括智能对话、文本生成、语义理解、计算推理等,并通过多个实际场景(如工作、学习、生活和社交)展示了如何利用DeepSeek解决问题。文章还强调了提示语设计的重要性,指出通过精准的提示语可以引导AI生成高质量的内容,并提出了提示语设计的策略和技巧。《[张梦飞:为什么DeepSeek-R1是推理模型?那GPT-4是什么模型?我的定义和思考](https://waytoagi.feishu.cn/wiki/WjMAwXjn0iCUGEklKOocn9zdnYA?useEs6=0)》在近年的大模型发展中,推理能力一直被视为衡量模型智能水平的关键因素。然而,随着DeepSeek-R1和O1等模型的出现,一个全新的概念浮现——推理模型(Reasoning Model)与非推理模型(Non-Reasoning Model)之间的根本区别,文章通过详细解析推理模型与非推理模型的训练路径、推理能力的形成机制、以及它们在思维链上的关键差别,帮助大家理解为何DeepSeek-R1这样的模型被称为推理模型,以及它如何突破了传统LLM的局限性。

4.4 历史更新

《[清华大学新闻与传播学院:普通人如何抓住DeepSeek红利](https://waytoagi.feishu.cn/record/T2yDrJ4NjeJFmccnBgzc5A7InIq)》本报告由清华大学陶炜博士生团队撰写,探讨普通人如何利用DeepSeek抓住AI红利。报告详细介绍了DeepSeek的应用场景,包括智能对话、文本生成、语义理解、计算推理等,并通过多个实际场景(如工作、学习、生活和社交)展示了如何利用DeepSeek解决问题。文章还强调了提示语设计的重要性,指出通过精准的提示语可以引导AI生成高质量的内容,并提出了提示语设计的策略和技巧。《[张梦飞:为什么DeepSeek-R1是推理模型?那GPT-4是什么模型?我的定义和思考](https://waytoagi.feishu.cn/wiki/WjMAwXjn0iCUGEklKOocn9zdnYA?useEs6=0)》在近年的大模型发展中,推理能力一直被视为衡量模型智能水平的关键因素。然而,随着DeepSeek-R1和O1等模型的出现,一个全新的概念浮现——推理模型(Reasoning Model)与非推理模型(Non-Reasoning Model)之间的根本区别,文章通过详细解析推理模型与非推理模型的训练路径、推理能力的形成机制、以及它们在思维链上的关键差别,帮助大家理解为何DeepSeek-R1这样的模型被称为推理模型,以及它如何突破了传统LLM的局限性。

详解:DeepSeek深度推理+联网搜索 目前断档第一

|[heading2]名称|[heading2]链接|[heading2]团队简介|[heading2]类型|[content]|-|-|-|-||DeepSeek——从入门到精通|[DeepSeek从入门到精通「清华团队」](https://bl7rsz9526.feishu.cn/wiki/JdqkwyhD7iE4IXkn5jPcmyEknjb)|清华大学新闻与传播学院<br>新媒体研究中心<br>元宇宙文化实验室|PPT课件||DeepSeek如何赋能职场应用?<br>——从提示语技巧到多场景应用|[DeepSeek赋能职场应用「清华团队」](https://bl7rsz9526.feishu.cn/wiki/HFuEwGBZ0id1HAkPNGLc64DtnXc)|中央民族大学新闻与传播学院<br>清华大学@新媒沈阳团队<br>向安玲|PPT课件||普通人如何抓住DeepSeek红利|[3️⃣普通人如何抓住DeepSeek红利「清华大学」](https://bl7rsz9526.feishu.cn/wiki/Gec9wxIGhiqSsAkrqzPc3ObLnpb)|清华大学新闻与传播学院<br>新媒体研究中心<br>元宇宙文化实验室<br>@新媒沈阳团队:陶炜博士生|PPT课件||DeepSeek+DeepResearch<br>——让科研像聊天一样简单|[4️⃣让科研像聊天一样简单「清华大学」](https://bl7rsz9526.feishu.cn/wiki/Q8hfwRUnWi707gkOyJCcZ82snyh)|北京航空航天大学高研院助理教授<br>清华大学新闻学院与人工智能学院双聘教授沈阳团队博士后<br>何静|PPT课件||证券机构会议文档|[AI大模型的突破与未来展望](https://bl7rsz9526.feishu.cn/wiki/MXHVwGwVciCRZykfeV0c8203nte)|国信证卷、华安证卷、中航证券、东兴证卷、浦银国际、开源证券...|PDF文档|

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
ai如何让普通人个人实现经济独立
在 AI 时代,普通人实现经济独立可以通过以下方式: 1. 达到人机协作的高级形态与独立创新:努力达到与 AI 高度协同又不失主导的状态,利用 AI 组成自己的“AI 团队”,实现原来需要很多人才能完成的目标。例如在产品开发中,一个人借助 AI 可以同时扮演多个角色,高效完成各项工作,实现一人公司或个人创造者经济。但要达到此阶段,需要对 AI 工具掌控纯熟,保持自主性和判断力,将 AI 看作“增强器”而非替代者。 2. 充分运用 AI 进行渐进式培养:从心态、知识、技能、思维、创造力到协作能力,层层推进,不断强化自身的主动性和思考力,成长为适应 AI 时代的超级个体,在知识广度、思考深度、创造力和效率上实现飞跃。 此外,还可以关注以下方面: 1. 了解 AI 多模态大爆发的趋势,认识到“互动”与“内容”可能变得廉价,而“真实”会成为稀缺资源。 2. 关注“AI 原生”的商业模式,基于 AI 的能力再造商业模式,而非套用现有流程。 3. 思考 AGI 可能带来的极端垄断和中心化操控能力,为自己准备 PlanB。 4. 认识到“人的模型”是 AI Agent 的前提,是 AI 与人合作的关键一环。 5. 关注 AGI 会主动投资的技术,如可控核聚变、量子计算、超导、广义机器人等。
2025-03-24
普通人通过ai赚钱
以下是一些普通人通过 AI 赚钱的方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝的模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询,将客户引流到私域接单变现。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超过 10 分钟就能出图。 变现方式:受众群体多为宝妈,变现方式多样,单价不低。但在平台引流要注意隐蔽,避免被平台检测限流或封号。 2. AI 产业中的机会 基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”的切入机会。 技术层:技术迭代速度快,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层:是广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 3. 内容创作 像作者本人是 AI 的受益者,AI 是生产力工具,能降本增效,但仍需投入大量时间和精力,起到辅助作用。 同时存在 AI 的受害者,他们的技能失效,AI 未创造足够新的生存空间。 作者作为坚定的 AGI believer,期望 AI 能做出重大科学发现、治愈疾病、消除饥饿和肥胖、给每人发钱,让人类自由从事想做的事。
2025-03-23
请问普通人怎么从事ai产品经理
普通人要从事 AI 产品经理,可以从以下几个方面入手: 1. 技术背景:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术知识,这对于理解和推动 AI 产品的开发至关重要。 2. 产品开发与管理经验:积累互联网和 AI 产品开发方面的经验,提升项目管理与执行能力,以推动产品的落地与优化。 3. 多元化应用场景:了解 AI 在 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等各行业的应用。 4. 学习与技能提升:处于 AI 技术初学阶段的人,要通过学习提升技能,并将其应用到实际工作和生活中。 5. 工具使用:广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,培养对工具的熟悉度和运用能力。 6. 协作与共学:积极参与各种 AI 学习社群和线上线下活动,与他人共学交流,提升技能与认知。 7. 内容创作:具备自媒体运营、视频制作、文案策划等内容创作能力。 8. 营销与品牌运营:掌握商业化路径,将 AI 技术与商业化需求结合,提供完整解决方案。 9. 活动策划与执行:积累活动策划和运营经验,具备资源整合和组织协调能力。
2025-03-21
一个高中毕业普通人学习AI如何从小白到精通
对于一个高中毕业的普通人,若想从 AI 小白成长为精通者,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于纯小白开发 AI 应用,还可以参考以下经验: 1. 从小白学代码,看人类导师和硅基助教的协作之道: 像案例中,女儿在 Claude 和父亲的帮助下,用 Unity 开发了一个 RPG 小游戏。起初父亲不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,半小时内完成并明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清、AI 给的方案复杂、配置错误等。这让我们意识到小白需要通过 AI 能直接搞定的小项目,先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为你生成一段超级长的代码,并给出提示,复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发时每次新起一个聊天就把文档发给 AI 并告知在做第几点功能,会非常方便。
2025-03-21
普通人如何学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下补充内容: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 优质信息源:像没有技术背景的普通人,想要学习或了解 AI,最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 另外,对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习资源都是免费开源的。
2025-03-21
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
搭建链接转文字的智能体
搭建链接转文字的智能体可以参考以下步骤: 1. 创建一个智能体,输入人设等信息,并放上相关工作流。 2. 配置完成后进行测试。但注意工作流中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,您可以将 api_token 作为工作流最开始的输入,让用户购买后输入使用,然后再发布。 3. 在阿里云百炼平台中,Deepseek R1 模型无需部署可直接使用。使用该模型需要解锁和授权,若没有授权按钮需对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 4. 新建智能体应用时,可选择模型并调整参数,如回复字数限制和携带上下文轮数等。 5. 对于模型的连接,可通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。还可重置 API key 以方便本地软件连接。
2025-04-10
有没有什么AI工具,可以把收藏的小红书内容链接批量导出
以下是一些可能满足您需求的 AI 工具: 1. MediaCrawler:这是一款一键抓取工具,支持小红书、抖音、快手、B 站和微博等平台内容抓取。它集成了 IP 代理池,可防封,还支持视频、图片、评论等多种数据格式保存。相关链接:https://github.com/NanmiCoder/MediaCrawler 、https://x.com/imxiaohu/status/1769569874601546034?s=20
2025-03-30
如何识别视频链接,转为文字稿
很抱歉,目前知识库中没有关于如何识别视频链接并转为文字稿的相关内容。但一般来说,您可以尝试使用以下几种方法: 1. 利用在线视频转文字工具:在网上有许多专门的工具和服务,您可以通过搜索引擎查找并选择可靠的工具来进行转换。 2. 手动听录:如果视频较短或对准确性要求较高,您可以自己通过聆听视频内容并手动记录为文字稿。 3. 借助语音识别软件:部分语音识别软件可能支持对视频中的声音进行识别并转换为文字。 希望这些建议对您有所帮助。
2025-03-19
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
哪些AI工具可以分析链接里的内容
以下是一些可以分析链接里内容的 AI 工具: AI Share Card:这是一款 AI 浏览器插件,能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡,让网页链接分享看起来更高级。适用于图文内容、专栏转发与推广、剧集分享、产品官网推广、商品分享等。 Text2SQL 相关工具: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有一些知名的 text2sql 项目,如 SQLNet、Seq2SQL、Spider 等。
2025-03-16
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
deepseek清华大学公开课
以下是关于清华大学与 DeepSeek 相关的公开课信息: 2 月 7 日,清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 2 月 18 日,清华大学沈少阳发布了《》
2025-03-09
deepseek教程 清华大学
以下是关于 DeepSeek 教程的相关信息: 清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 全球数据资产理事会发布了《》。 还有《》。
2025-03-07
清华大学 deepseek从入门到精通
《DeepSeek:从入门到精通》是清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等。同时探讨了如何使用 DeepSeek,涵盖推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 此外,还有其他与 DeepSeek 相关的动态,如清华大学沈少阳的《DeepSeek+DeepResearch 应用报告》,以及来自不同机构的相关研究报告,如智灵动力的《DeepSeek 行业应用实践报告》、厦门大学的《2025 年大模型概念、技术与应用实践》、国海证券的《人工智能系列深度:DeepSeek 十大关键问题解读》、全球数据资产理事会的《DeepSeek 使用教程蓝皮书从入门到进阶完整指南》、北航&清华大学的《DeepSeek+DeepResearch——让科研像聊天一样简单》、中泰证券的《DeepSeek 将如何改变 AI 应用?》。
2025-03-05
清华大学deepseek讲解视频
以下是为您找到的与清华大学和 DeepSeek 相关的信息: 清华大学计算机科学与技术系助理教授章明星从大模型当前的发展阶段出发,分享了关于模型架构演进、大模型 Scaling Law 的发展趋势及相应趋势对系统层面影响的看法,并探讨了未来的发展方向。 《DeepSeek 的秘方是硅谷味儿的》提到 DeepSeek 是一家位于杭州的人工智能创业公司,其大语言模型 DeepSeekV3 在全球引发广泛关注。该模型以 550 万美元和 2000 块低配版英伟达 H800 GPU 训练,超越了多个顶级模型,获得硅谷研究者的高度评价。DeepSeek 的成功被视为中国式创新的典范,但其独特之处在于其更像一个研究机构,注重技术创新而非商业化运作,吸引了大量年轻的顶尖研究人才。 但未找到清华大学 deepseek 讲解视频的直接相关内容。
2025-03-05