Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

偏推理型的内容,怎么提升模型的推理深度及准确度?

Answer

提升模型推理深度及准确度的方法包括以下几个方面:

  1. 扩大模型规模:随着模型规模的扩大,其推理能力会得到提升,类似于 AlphaGo 或 AlphaZero 的工作方式,通过蒙特卡罗推演来修改评估函数,从而提高推理精度。
  2. 引入多模态学习:引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习。
  3. 优化训练方法:
    • RLHF(Reinforcement Learning from Human Feedback):模型在这个过程中的目标是最大程度地获得人类的认可,通过奖励模型来衡量。
    • 结合不同的推理能力提高途径:将生成不同的思维链(CoT)并选择有效路径的方法,与在部署时用大量计算进行推理的方法结合起来。
  4. 改进模型结构和算法:
    • 规模和算法是科技进步的关键因素,数据和计算规模具有决定性作用。
    • 在模型之上添加启发式方法或增加模型本身的规模。

此外,Hinton 还提到了一些相关观点,如最合理的模型是将符号转换成大向量并保留符号的表面结构,大型语言模型通过寻找共同的结构来提高编码效率,以及即使训练数据中有错误,大型神经网络也具有超越训练数据的能力等。

Content generated by AI large model, please carefully verify (powered by aily)

References

观点:AI 教父 Hinton 最新万字精彩访谈:直觉,AI 创新的洞见和思考,未来 (附全文+视频)

Hinton认为,随着模型规模的扩大,其推理能力会得到提升。这种推理能力的提升类似于AlphaGo或AlphaZero的工作方式,它们通过蒙特卡罗推演来修改评估函数,从而提高推理精度。大型语言模型也应该开始通过推理来训练,而不仅仅是模仿人类的行为。在多模态学习方面,Hinton认为引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习,这将使其在未来占据主导地位。在语言与认知的关系上,Hinton提出了三种观点:符号观点、向量观点和嵌入观点。他认为,最合理的模型是将符号转换成大向量,但保留符号的表面结构,这样可以更好地理解和预测下一个符号。Hinton回顾了他在2009年提出使用GPU进行神经网络训练的早期直觉。他发现,使用GPU可以将运算速度提高30倍,这对于机器学习研究人员来说至关重要。他在NIPS会议上公开推荐了NVIDIA的GPU,并向NVIDIA请求赞助,最终得到黄仁勋的支持。Hinton提出,模拟计算可以在较低的功率下运行大型语言模型,但每个硬件的特性都会有所不同,因此学习过程需要利用硬件的特定属性。然而,这种方法的局限性在于,当一个人去世后,他的大脑中的权重对其他人没有用处。相比之下,数字系统可以通过共享权重来提高效率,因为一旦有了权重,就可以在不同的计算机上复制相同的计算过程。这种方式使得数字系统在知识共享方面远胜于人类。Hinton还讨论了神经科学的时间尺度问题,指出在大脑中,权重改变的时间尺度很多,这是我们的神经模型尚未实现的。大脑使用快速权重进行临时记忆,而我们的模型由于需要处理大量不同的情况,所以无法实现这一点。

OpenAI联创:RLHF是超级智能的秘密武器

Dwarkesh Pa tel:在今天模型的发展过程中,RLHF不仅仅影响了chatbot的“人格”,也教会了模型选择输出什么、以什么样的形态输出。如果把RLHF对模型训练的这些影响映射到人类心理学上的话,你觉得RLHF起到了什么样的功能?是驱动力、目标还是某种冲动?John Schulman:人类的动机和目标其实和AI有相似的地方,比如我们在追求目标时,往往会努力达到某种特定的状态,尽量避免和目标不符的状态。当然我们对动机或目标的理解不止这些,还包括实现目标时获得的满足感等等。这些因素主要和学习算法的过程更相关,并不是模型已经训练完成固定模式之后的行为。虽然不确定这种类比是不是贴切,但一定程度上,模型确实以某种有意义的方式拥有了“动机”和“目标”。以RLHF为例,模型在这个过程中的目标是最大程度地获得人类的认可,这种认可通过奖励模型(reward model)来衡量。实际上,模型努力产出的是人们可能会喜欢并认为正确的结果。Dwarkesh Pa tel:我了解到模型提高推理能力的途径主要有两种。一种是生成不同的思维链(CoT),选择能够带来正确答案的路径。在部署前,模型会基于这些有效的思考路径进行训练;另外一种是在部署时用大量计算进行推理,模型在这种场景下可以和自己对话。你觉得哪种更接近高推理水平模型会采用的训练方法?这样的推理能力是因为模型进行了大量的推理计算,还是因为训练过程中特别强调了逻辑推理性能的提升?John Schulman:推理在这里可以被定义为在测试阶段需要进行某种计算或逻辑推演的任务。按照这个定义,推理任务涉及到在测试时进行的逐步计算过程,还有在训练阶段进行的大量实践,所以我觉得把这两种方法结合起来能达到最佳的效果。

观点:AI 教父 Hinton 最新万字精彩访谈:直觉,AI 创新的洞见和思考,未来 (附全文+视频)

规模和算法是科技进步的关键因素。他认为Ilya Sutskever关于系统规模足够大就能更好运作的观点已被证实。尽管Transformer等新想法很重要,但数据和计算规模才是决定性因素。Hinton回顾了他与Ilya和James Martins在2011年发表的一篇论文,该论文使用字符级预测和维基百科数据进行实验,结果令人惊讶。他解释说,这种方法并非错误,而是一种有效的学习方式。事实上,Hinton是第一个使用嵌入和反向传播的神经网络语言模型的创造者。他进一步阐述了这种模型的工作原理,即通过预测下一个符号来理解问题,这与传统的自动完成功能有很大不同。Hinton认为,这种模型的理解方式与人类非常相似,尽管许多人认为这些模型只是在预测下一个符号,而没有进行推理。谈到大型语言模型的工作原理时,Hinton解释说它们通过寻找共同的结构来提高编码效率。他以GPT-4回答问题为例,说明这种模型如何通过理解看似不同事物之间的类比来进行创新。Hinton还提到了AlphaGo的例子,解释了强化学习如何使其超越当前状态。他认为,这可能是当前数据实验室所缺少的组件,但并非完全必要。他还提到了一个实验,即使训练数据中有一半的答案是错误的,反向传播也能将误差降低到5%或更低,这表明大型神经网络实际上具有超越训练数据的能力。为了提高这些模型的推理能力,Hinton提出了两种可能的方法:一种是在模型之上添加启发式方法,另一种是增加模型本身的规模。本文主要讨论了大型语言模型的推理能力、多模态学习、语言与认知的关系以及早期使用GPU进行神经网络训练的直觉。

Others are asking
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
知识表示与推理发展过程中有哪些里程碑式的技术
在知识表示与推理的发展过程中,具有以下里程碑式的技术: 1. 知识图谱: 于 2012 年 5 月 17 日由 Google 正式提出,旨在提高搜索引擎能力,增强用户搜索质量和体验。 关键技术包括知识抽取(实体抽取、关系抽取、属性抽取)、知识表示(属性图、三元组)、知识融合(实体对齐、知识加工、本体构建、质量评估、知识更新)、知识推理。 2. Symbolic Agent: 时间:20 世纪 50 70 年代。 特点:基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。 技术:基于规则的系统、专家系统,如 MYCIN、XCON 等。 优点:明确的推理过程,可解释性强。 缺点:知识获取困难,缺乏常识,难以处理模糊性。
2025-03-27
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
如果我想做一个3000字的prompt,能产出8000字的八字批文解析,要求准确度比较高,能否实现
目前的技术水平较难直接实现您所描述的需求。生成准确且高质量的八字批文解析是一个复杂的任务,需要对八字命理有深入的理解和丰富的经验。虽然 AI 可以根据给定的提示生成文本,但要生成 8000 字且准确度较高的八字批文解析存在很大的挑战。这不仅涉及到对大量复杂命理知识的准确把握,还需要考虑到各种特殊情况和细微差别。但随着技术的不断发展,未来或许有可能在一定程度上接近您的期望。
2025-02-12
怎么用RAG增强代码生成的准确度
使用RAG(RetrievalAugmented Generation)方法可以有效增强代码生成的准确度。RAG结合了检索和生成的优势,使生成模型能够利用外部知识库或文档来提高生成结果的质量。以下是如何使用RAG来增强代码生成准确度的步骤: 1. 准备检索库 首先,需要一个包含相关代码片段、文档或知识库的检索库。这可以是公开的代码库(如GitHub)、项目文档、API文档或编程语言的官方文档。 2. 实施检索模型 使用一个检索模型来从库中找到与输入查询最相关的文档或代码片段。常用的检索模型包括BM25、TFIDF等,或者更先进的深度学习模型如DPR(Dense Passage Retrieval)。 ```python from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer, DPRContextEncoder, DPRContextEncoderTokenizer 加载检索模型和tokenizer question_encoder = DPRQuestionEncoder.from_pretrained question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained context_encoder = DPRContextEncoder.from_pretrained context_tokenizer = DPRContextEncoderTokenizer.from_pretrained 编码查询 query = "How to sort a list in Python?" query_inputs = question_tokenizer query_embedding = question_encoder.pooler_output 编码文档(检索库中的代码片段或文档) contexts = context_embeddings = for context in contexts: context_inputs = context_tokenizer context_embedding = context_encoder.pooler_output context_embeddings.append ``` 3. 检索相关文档 计算查询和文档之间的相似度,检索最相关的文档。 ```python import torch 计算相似度(使用点积) similarities = 找到最相关的文档 most_relevant_index = torch.argmax most_relevant_context = contexts ``` 4. 结合生成模型 使用生成模型(如GPT3或其他代码生成模型),结合检索到的相关文档作为上下文,生成高质量的代码。 ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer 加载生成模型和tokenizer generation_model = GPT2LMHeadModel.from_pretrained generation_tokenizer = GPT2Tokenizer.from_pretrained 将检索到的上下文和查询合并 input_text = f"{most_relevant_context}\n\n{query}" input_ids = generation_tokenizer.encode 生成代码 generated_outputs = generation_model.generate generated_code = generation_tokenizer.decode print ``` 5. 集成与优化 为了进一步优化RAG的代码生成性能,可以进行以下步骤: 多轮检索:如果第一次检索结果不理想,可以通过多轮检索获取更多相关信息。 细化检索库:不断更新和扩展检索库,确保其中包含最新、最相关的代码片段和文档。 微调生成模型:使用领域特定的数据微调生成模型,使其更适合特定的代码生成任务。 通过这些步骤,RAG方法能够有效地增强代码生成的准确度,提高生成结果的相关性和质量。
2024-05-29
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
基于深度学习的商代食器分类研究 明确详细的研究意义
基于深度学习的商代食器分类研究具有多方面的重要意义。首先,它有助于深入了解商代的饮食文化和社会生活。通过对食器的准确分类,可以揭示当时人们的饮食习惯、烹饪方式以及社交礼仪等方面的信息。 其次,为考古学研究提供新的方法和视角。利用深度学习技术能够更高效、更准确地处理和分析大量的商代食器数据,突破传统研究方法的局限。 再者,有助于文物保护和管理。精确的分类有助于制定更有针对性的保护策略,确保这些珍贵的文化遗产得到妥善保存。 最后,促进跨学科研究的发展。将深度学习与考古学相结合,能够吸引更多不同领域的学者参与,推动相关研究的创新和进步。
2025-03-27
深度学习模型架构有哪些
深度学习模型架构主要包括以下几种: 1. Transformer 模型: 由编码器(Encoder)和解码器(Decoder)两大部分组成。 每个部分由多个相同的层堆叠而成,每层包含多头注意力机制(Multihead Attention)和位置全连接前馈网络。 编码器将自然语言转换成向量文本,解码器基于编码器的输出和之前生成的输出逐步生成目标序列。 2. DiT 架构:结合扩散模型和 Transformer 的架构,用于高质量图像生成。 3. 存算一体架构: 是未来 AI 硬件的发展趋势。 运行几百亿个参数的大模型时具有优势,可避免数据搬运。 此外,在端到端算法的时代,有观点认为不应继续使用冯诺依曼架构,且在存算一体的芯片之上,有望诞生全新的算法。在将大模型与私域知识结合方面,有重新训练、微调、RAG、关键词工程、加长 Context 等方法,其中长 Context 和 RAG 被认为较有希望。
2025-03-22
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
帮我完成基于深度学习的草莓目标识别的毕设
很抱歉,目前没有关于基于深度学习的草莓目标识别毕设的具体内容。但我可以为您提供一个大致的指导框架: 首先,您需要收集大量包含草莓的图像数据,并对这些数据进行标注,例如标记出草莓的位置和类别。 然后,选择适合的深度学习模型,如卷积神经网络(CNN),可以考虑使用经典的模型架构如 VGG、ResNet 等,或者根据您的需求进行适当的修改和优化。 在训练模型时,要注意设置合适的超参数,如学习率、迭代次数等,并使用合适的优化算法,如随机梯度下降(SGD)、Adagrad 等。 在模型训练完成后,进行评估和验证,可以使用准确率、召回率、F1 值等指标来衡量模型的性能。 最后,对模型进行优化和改进,以提高识别效果。 希望以上框架对您有所帮助,祝您顺利完成毕业设计!
2025-03-09
我现在需要做我的毕业设计名为“基于深度学习的草莓目标识别系统”,你能告诉我如何制作以及用到这里的哪些ai工具、
对于您的“基于深度学习的草莓目标识别系统”毕业设计,以下是一些制作的步骤和可能用到的 AI 工具: 制作步骤: 1. 数据收集:收集大量包含草莓的图像数据,并对其进行标注,例如标记出草莓的位置和类别。 2. 数据预处理:对收集到的数据进行清洗、增强、裁剪等操作,以提高数据质量和模型的泛化能力。 3. 选择模型架构:可以考虑使用常见的深度学习目标检测模型,如 Faster RCNN、YOLO 等。 4. 训练模型:使用预处理后的数据对选择的模型进行训练。 5. 模型评估:使用测试集对训练好的模型进行评估,如准确率、召回率等指标。 6. 模型优化:根据评估结果对模型进行调整和优化,例如调整超参数、增加数据量、使用更复杂的模型等。 可能用到的 AI 工具: 1. TensorFlow:一个广泛使用的深度学习框架,提供了丰富的模型构建和训练工具。 2. PyTorch:另一个流行的深度学习框架,具有灵活的编程接口和强大的计算能力。 3. OpenCV:用于图像处理和数据预处理。 4. LabelImg:用于图像数据的标注。 希望以上内容对您有所帮助,祝您毕业设计顺利!
2025-03-09
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14