Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

java程序员,怎么吧AI结合到公司的业务上去,K12教育公司

Answer

对于 Java 程序员将 AI 结合到 K12 教育公司的业务中,以下是一些可能的方向和建议:

首先,可以考虑利用自然语言处理技术来改善学生与学习平台的交互体验。例如,开发智能客服,能够自动回答学生和家长常见的问题,提高服务效率。

其次,通过机器学习算法对学生的学习数据进行分析,从而实现个性化的学习推荐。比如根据学生的学习进度、成绩、学习习惯等因素,为他们推荐适合的课程、练习和学习资源。

另外,运用图像识别技术来辅助教学材料的制作和评估。例如,自动识别和批改学生的手写作业、试卷等。

还可以开发智能辅导系统,为学生提供实时的学习指导和答疑服务。

最后,利用语音识别和合成技术,打造有声读物、语音教学等功能,丰富教学形式。

但在将 AI 引入业务的过程中,需要注意数据的安全性和合法性,以及确保技术的可靠性和稳定性。同时,要充分考虑教育的特点和学生的需求,以实现有效的融合和应用。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
Java相关的AI
以下是关于 Java 相关的 AI 的一些信息: 1. 利用固定格式文档结合 AI 进行代码开发的可行性分析:建议优化方面,要强调组员主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。经验分享方面,在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接: 2. 后端 Java 程序员转向 LLM 方向的行动建议:借助 AI 编程(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:
2025-03-14
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
有java scala hadoop spark flink开发经验员工入门AI 学习提纲以及对应学习内容
以下是为有 Java、Scala、Hadoop、Spark、Flink 开发经验的员工提供的 AI 入门学习提纲及对应学习内容: 1. 学习资源推荐: 系统化学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理学习笔记与大家交流互动。 社区共创学习:参与社区共创活动,通过做小项目反向推动学习。 参考资料:A16Z 推荐的 AI 相关原理内容,包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 官方 cookbook:open AI 的官方 cookbook,小琪姐做了中文精读翻译。 历史脉络资料:整理 open AI 的发展时间线、万字长文回顾等。 2. 学习路径: 从提示词开始学习与各类模型的对话,了解其重要性和结构化提示词的优势。 学习过程中可以先从国内模型工具入手,不花钱,若想进阶再考虑高阶方向。 3. 其他学习方式: 创作者将内容做成可视化形式,后续会发到群里。 上传相关 PPT 用作参考。 从温达、李弘毅老师课程等学习入门。 了解时代杂志评选的百位领军人物。 学习 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,可通过与 AI 对话或李继刚老师的课程来理解。 订阅赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等获取最新信息并投稿。 参与社区活动,如 AIPU、CONFIUI 生态大会、每月的切磋大会、新活动 AIPO 等。
2025-02-21
大模型在软件开发公司(主java+vue)的应用场景有哪些
大模型在以 Java 和 Vue 技术为主的软件开发公司中,具有以下一些应用场景: 1. 代码自动生成:大模型可以根据需求描述生成 Java 或 Vue 的代码片段,提高开发效率。 2. 代码优化建议:分析现有代码,提供优化的建议和策略,提升代码质量。 3. 智能错误检测与修复:快速识别代码中的错误,并提供可能的修复方案。 4. 需求分析与理解:帮助更好地理解和梳理复杂的业务需求,转化为技术实现的思路。 5. 自动化测试用例生成:根据代码和需求生成有效的测试用例,提高测试效率和覆盖度。 6. 技术选型辅助:在面临新的项目或技术难题时,提供相关技术选型的参考和建议。
2025-02-06
35岁java后端开发如何转型AI开发
对于 35 岁的 Java 后端开发人员转型 AI 开发,以下是一些建议: 1. 利用固定格式文档结合 AI 进行代码开发时,要强调组员的主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接: 2. 借助 AI 编程工具(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:
2025-01-29
对程序员在 AI 能力上不同维度的分析
以下是对程序员在 AI 能力上不同维度的分析: AI 对程序员工作的影响: AI 可代替的部分:代码生成、补全、分析问题和数据提取、辅助架构设计文档等。 AI 无法代替的部分:需求分析、复杂项目拆分、线上问题排查、调试及安全性保障。 企业考察候选人 AI 能力的要点: 基础 AI 应用能力:包括提示词工程,会用合适的方式提问以引导 AI 输出高质量答案;内容评估能力,能够判断 AI 生成的内容是否靠谱并加以优化;熟练使用 AI 工具,能快速上手各类 AI 工具,如 DeepSeek、Cursor、Midjourney 等。 高级 AI 应用能力:任务拆解能力,知道哪些工作适合用 AI,哪些环节需要人工把控;业务场景应用能力,能在实际工作中灵活运用 AI 提高效率。 加分项:快速学习能力,能跟上 AI 技术的快速迭代,主动学习新工具、新方法。 不同领域考察 AI 能力的方式:因领域而异。 程序员与 AI 编程助手: 约 2/3 的 730 名程序员已在使用 AI 编程助手(如 ChatGPT、GitHub Copilot、Cursor 等),原因包括对新技术的敏感性、尝试后获得效率红利、习惯养成。 使用比例远超预期,AI 编程助手迅速渗透开发者日常,好奇心驱动和效率反馈形成正向循环,AI 的使用逐渐成为程序员的“标配能力”。 AI 对编程行业的影响: 不止于“效率提升”,还带来岗位结构、心理预期、安全风险等深层变化。 技能退化与岗位压缩令人焦虑,使用 AI 成为职场新基本素养,心理压力、合规风险需同步应对。 积极影响与未来趋势:人机协作成为主流,AI 释放开发者创造力;门槛降低促使创新频率提升;持续学习与能力更新成为行业新常态。
2025-04-09
分析程序员在AI能力上的不同维度,比如AI框架,AIPrompt等
以下是对程序员在 AI 能力上不同维度的分析,包括 AI 框架和 AI Prompt 等方面: AI 框架: PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,是一个集中化平台,便于在 AI 项目中管理提示,实现协作和工作流程优化。具有本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具等特点。开发指向: ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。允许用户进行快速而有效的提示想法测试和变化,具有多模型测试、响应质量比较、评估指标设置、多对话管理等特点。开发指向: AI Prompt: Promptknit:为 AI Prompts 测试提供服务的平台,可能提供工具和资源来帮助用户设计、测试和优化 AI 模型的提示。网站: 对于律师等法律人写好 Prompt 的建议: 明确 Prompt 是给人工智能(AI)系统提供的信息或问题,用来引导其产生特定回答或执行特定任务。 建议框架及格式:CRISPE 包括 Capacity and Role(能力与角色)、Insight(洞察)、Statement(陈述)、Personality(个性)、Experiment(举例)。例如,在处理合同纠纷案件时,为 AI 赋予角色和能力,提供背景信息和上下文,明确期望其完成的任务,设定回答风格等。
2025-04-09
ai论文程序员是什么岗位
在现行法律体系框架下,AI 论文中关于程序员在著作权归属方面存在以下情况: 程序员不是编写 AI 代码所生成内容的著作权归属主体。虽然构建 AI 模型耗费了程序员大量脑力劳动,但他们只是代码的创作主体,其权利可通过计算机软件著作权进行保护。 以 Stable Diffusion 生成的图片为例,程序员对最终产出的图像没有创作的主观意愿,不能成为图片的创作主体。
2025-04-08
我不会写代码,怎么像个程序员一样利用ai帮我写代码
如果您不会写代码但想利用 AI 帮您写代码,可以参考以下方法: 1. 对于编程小白来说,最好向 AI 提供代码节点中的范例,也就是新进入代码节点的 IDE 中所看到的那些代码(从 async def 到 return 的内容)。因为 AI 可能并不清楚代码中规定的输入输出格式(比如代码节点的 Python 语言使用字典的形式来组织输入和输出的变量),所以提供范例可以尽可能减少您需要对 AI 所写代码的改动。 2. 需要向 AI 说清楚输入变量与输出变量的类型。 3. 最好说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 最好列出输入变量的具体书写形式,以方便 AI 尽可能准确地理解。如果是 Object 或 Array 这样较为复杂的形式,您不会写,可以使用下面这个方法:在前一个节点后接一个“文本处理”节点,选择字符串拼接,输入选择前一个节点输出中所需的那个变量,拼接内容写{{String1}}就行,然后试运行,展开该节点的运行结果,复制最终输出中“output:”后面的内容即可,如果内容太长,提问时可省略不重要的具体内容,保留书写形式即可。 5. 说清楚代码要实现什么功能,如果功能较为复杂,尽量将运行逻辑说清楚,越清楚越好。描述中尽量用变量名称来指代所涉及到的各个变量。 这里给出一个提问范式供大家参考: 请仿照上述代码的结构,用 python 编写代码,实现以下功能: 输入变量为。 输出变量为。 。关键步骤请附上注释。 另外,如果您在处理 SQL 代码时不会写,也可以让 AI 帮忙。例如,您可以将以下内容发送给 AI:学习这个文档 https://www.coze.cn/docs/guides/database,然后帮我撰写用于工作流的 sql。之后按照 AI 的回复要求提供具体需求,如数据库表名称、操作类型、相关字段等,AI 会为您生成相应的 SQL 语句。 在使用代码节点时,即使您不是程序员,也可以让 AI 帮您写代码。但要先搞清楚输入和输出以及想要代码实现的逻辑。比如在处理谷歌搜索节点的输出作为 Code 节点的输入时,要先了解相关字段,如 link(网址)、title(标题)、snippet(简短介绍)、source(来源)等。
2025-03-08
程序员在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
程序员在使用 AI 时,可能会涉及以下一些 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助提高编写代码的效率。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的由机器学习技术驱动的代码生成器,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 此外,还有一些其他相关的 AI 工具,如: 1. ChatAll:可以同时与多个 AI 机器人实时聊天的开源工具,支持多种主流 AI 聊天机器人。 2. AIProductsAllInOne:整理了一些 ChatGPT 以及 AI 相关的生产力工具。 3. Shell GPT:在命令行中集成了 ChatGPT,帮助快速编写 shell 命令、代码片段等。 4. 飞书 GPT:集成了飞书、GPT3.5、Dall·E、Whisper 等 API,支持多种功能。 5. ChatPDF:提取 PDF 文件内容并交给 ChatGPT 分析,实现一对一对话交流。 6. GitHub Copilot X:基于 AI 驱动的跨时代代码编辑器,带来全新编程体验。 在 PPT 制作方面,有以下 AI 工具: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 每个工具都有其特色和适用场景,程序员可以根据自己的需求选择最适合的工具。
2025-03-07