Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

强化学习

Answer

强化学习是机器学习领域的一个重要分支,能在多个领域发挥作用:

  1. 游戏方面:如 DeepMind 的 AlphaGo 在围棋比赛中战胜世界冠军,以及 OpenAI 的 Dota 2 AI 在电子竞技比赛中战胜职业选手,能帮助智能体学习复杂策略和行为,超越人类表现。
  2. 机器人学领域:应用于机器人控制、导航和自主学习,使机器人能在复杂环境中自主执行搬运物品、避障导航、飞行控制等任务。
  3. 自动驾驶领域:用于自动驾驶汽车的控制和决策,使其能在复杂道路环境中保持安全驾驶,规避障碍物,遵守交通规则。
  4. 推荐系统方面:用于个性化推荐,通过学习用户行为和喜好,智能推荐合适内容,提高用户满意度和留存率。
  5. 自然语言处理领域:应用于对话系统、机器翻译、文本摘要等,使模型生成更符合人类语言习惯的文本,提高语言理解和生成质量。
  6. 资源管理领域:用于优化资源管理问题,如数据中心的能源管理、通信网络的流量调度等,实现资源高效利用,降低成本,提高性能。
  7. 金融领域:用于股票交易、投资组合优化等,帮助智能体根据市场变化调整投资策略,实现收益最大化。

神经网络流行起来后,人们设计了利用神经网络进行强化学习的办法,如解决平衡运动着的平台上的棍子等经典问题。

为简化强化学习问题和解决方案,通常会简化环境,使智能体只了解对决策重要的细节。整个学习问题是探索环境和经过一个又一个的状态来尝试最大化智能体所得到的奖励,直到达到目标状态,比如从 A 驾驶到 B、赢得国际象棋比赛、通过聊天解决客户问题等。

Content generated by AI large model, please carefully verify (powered by aily)

References

入门指南:强化学习

▌1.强化学习能做什么强化学习(Reinforcement Learning,RL)是机器学习领域的一个重要分支,它关注智能体如何通过与环境的交互来学习和优化策略,以实现长期回报的最大化。强化学习已经在许多领域取得了显著的成功,以下是一些主要的应用场景:1.游戏:强化学习在游戏领域取得了很多突破性的成果,如DeepMind的AlphaGo在围棋比赛中战胜世界冠军,以及OpenAI的Dota 2 AI在电子竞技比赛中战胜职业选手。这些成功表明,强化学习能够帮助智能体学习复杂的策略和行为,甚至超越人类的表现。2.机器人学:强化学习在机器人学领域有广泛的应用,如机器人控制、导航和自主学习。通过强化学习,机器人可以学会在复杂的环境中自主执行任务,如搬运物品、避障导航、飞行控制等。3.自动驾驶:强化学习可以用于自动驾驶汽车的控制和决策。通过与环境的交互,自动驾驶汽车可以学会在复杂的道路环境中保持安全驾驶,规避障碍物,遵守交通规则等。4.推荐系统:强化学习可以用于个性化推荐系统,通过学习用户的行为和喜好,智能地推荐合适的内容。例如,网站可以使用强化学习算法来优化新闻、广告或产品推荐,从而提高用户的满意度和留存率。5.自然语言处理:强化学习在自然语言处理领域也有广泛的应用,如对话系统、机器翻译、文本摘要等。通过强化学习,模型可以学会生成更符合人类语言习惯的文本,提高语言理解和生成的质量。6.资源管理:强化学习可以用于优化资源管理问题,如数据中心的能源管理、通信网络的流量调度等。通过学习和优化策略,强化学习可以实现资源的高效利用,降低成本,提高性能。7.金融:强化学习在金融领域也有一定的应用,如股票交易、投资组合优化等。通过强化学习,智能体可以学会根据市场变化调整投资策略,从而实现收益的最大化。

深度 | 神经网络和深度学习简史(第三部分):90年代的兴衰——强化学习与递归神经网络

神经网络运用于无监督学习的发现之旅结束后,让我们也快速了解一下它们如何被用于机器学习的第三个分支领域:强化学习。正规解释强化学习需要很多数学符号,不过,它也有一个很容易加以非正式描述的目标:学会做出好决定。给定一些理论代理(比如,一个小软件),让代理能够根据当前状态做出行动,每个采取行动会获得一些奖励,而且每个行动也意图最大化长期效用。因此,尽管监督学习确切告诉了学习算法它应该学习的用以输出的内容,但是,强化学习会过一段时间提供奖励,作为一个好决定的副产品,不会直接告诉算法应该选择的正确决定。从一开始,这就是一个非常抽象的决策模型——数目有限的状态,并且有一组已知的行动,每种状态下的奖励也是已知的。为了找到一组最优行动,编写出非常优雅的方程会因此变得简单,不过这很难用于解决真实问题——那些状态持续或者很难界定奖励的问题。强化学习这就是神经网络流行起来的地方。机器学习大体上,特别是神经网络,很善于处理混乱的连续性数据,或者通过实例学习很难加以定义的函数。尽管分类是神经网络的饭碗,但是,神经网络足够普适(general),能用来解决许多类型的问题——比如,Bernard Widrow和Ted Hoff的Adaline后续衍生技术被用于电路环境下的自适应滤波器。因此,BP研究复苏之后,不久,人们就设计了利用神经网络进行强化学习的办法。早期例子之一就是解决一个简单却经典的问题:平衡运动着的平台上的棍子,各地控制课堂上学生熟知的倒立摆控制问题。双摆控制问题——单摆问题进阶版本,是一个经典的控制和强化学习任务。

深度学习(4)强化学习

为了简化强化学习问题和解决方案,通常会简化环境,使智能体只了解对决策重要的细节,而忽略其他部分。就像骑自行车的例子一样,强化算法只有两个反馈源可供学习:惩罚(摔倒的疼痛)和奖励(骑几米的刺激)。如果我们将惩罚视为负奖励,那么整个学习问题都将是关于探索环境和经过一个又一个的状态来尝试最大化我们的agent所得到的奖励,直到达到目标状态(自动从A驾驶到B;赢得一场国际象棋比赛,通过聊天解决客户问题):简而言之,这就是强化学习。

Others are asking
那深度学习是监督学习、无监督学习还是强化学习呢?又或者他们四个是并列的?
深度学习是一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习和强化学习。监督学习是使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习没有标签的数据,算法自主发现规律,经典任务如聚类。强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。所以深度学习与监督学习、无监督学习、强化学习不是并列关系,而是其应用的一种方式。
2025-01-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
coze平台中bot的沟通能力与哪些因素有关。如果希望bot有极强的沟通能力应该重点强化哪些
在 Coze 平台中,Bot 的沟通能力与以下因素有关: 1. Agent 意图:定义了 Agent 的工作任务和适用场景,明确其核心功能和角色。 2. Agent 提示词:包含系统级别的提示词,与人物设定和逻辑处理紧密相关,帮助 Agent 更好地理解和响应用户需求。 3. Agent 技能:允许 Agent 调用预设的工具、工作流和知识库,包括自身创建的工具、Coze 市场上的公开工具及相关工作流程。 如果希望 Bot 有极强的沟通能力,应重点强化以下方面: 1. 准确设置每个 Agent 的使用场景和意图,这对于控制 Agent 跳转至关重要,确保在执行不同任务时系统能准确切换。 2. 清晰指定节点切换的判断时机和参考上下文的轮数,一般建议参考五轮左右的对话内容,以确保 Bot 能根据充分的上下文信息做出恰当跳转决策。 Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,具有以下特点: 1. 多语言模型支持,如 GPT48K、GPT4128K 及云雀语言模型等。 2. 集成超过 60 款插件,涵盖多种功能,支持用户创建自定义插件。 3. 具备知识库功能,允许上传和管理多种格式的文档及获取在线内容和 API JSON 数据。 4. 提供数据库和记忆能力,允许 Bot 访问会话内存和上下文,持久记住重要参数或内容。 5. 支持工作流设计,用户可通过拖拉拽方式搭建复杂任务流。 6. 采用多代理模式,一个机器人中可运行多个任务,添加多个独立执行特定任务的代理。 7. 免费使用,无需支付费用。 8. 易于发布和分享,可将搭建的 Bot 发布到各类社交平台和通讯软件上。 Bot 的开发和调试页面主要分为提示词和人设区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置(如触发器、开场白、自动建议、声音)等区块。
2025-01-18
深度强化学习
深度强化学习是强化学习与深度学习技术相结合的领域。 其起源于 20 世纪 90 年代,特点是通过试错学习最优行为策略,以最大化累积奖励。 技术方面,起初基于策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA 是典型代表。随着深度学习兴起,深度神经网络与强化学习融合,产生了深度强化学习,如 AlphaGo 和 DQN 等就是显著成果。 深度强化学习的优势在于允许 Agent 在未知环境中自主探索和学习,无需人工明确指导,能够处理高维状态空间和连续动作空间,在游戏、机器人控制等领域有广泛应用潜力。 然而,深度强化学习也面临诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,尤其在应用于复杂多变的真实世界环境时。 在实现上,如 DQN 是通过将神经网络和 Qlearning 结合,用函数而不是 Q 表来表示动作价值,利用均方误差设计 Loss Function,像 Qlearning 一样利用四元组进行训练。
2024-11-30
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可利用周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础为零,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》学习并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 缓存区:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法: 比如在状态 s1 上,根据 Q 值表选择行动,如发现向下行动 Q 值最大则向下走。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态的奖励 R,作为“Q 现实”,之前根据 Q 表得到的是“Q 估计”。通过公式更新 Q(s1,下)的值,公式为:。 算法流程:初始化 Q,for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s,for 时间步 t = 1> T do: ,End for,End for。启动程序训练 100 次后可较好进行游戏。
2024-11-21
强化学习+开源代码
以下是关于强化学习的开源代码入门指南: 1. 基础知识准备: 若概率论和线性代数基础薄弱,可在周末约一天时间学习相关课程,若不关注公式可忽略。 若机器学习基础薄弱,先看吴恩达课程,再以李宏毅课程作补充,若仅为入门强化学习,看李宏毅课程前几节讲完神经网络部分即可,此视频课程约需 25 小时。 2. 动手实践: 跟随《动手学深度学习 https://hrl.boyuai.com/》动手学习概念并写代码,入门看前五章,约 10 小时。 观看 B 站王树森的深度学习课程前几节学习强化学习基础知识点,约 5 小时。 3. 项目实践: 参考《动手学强化学习》(已开源 https://hrl.boyuai.com/),看到 DQN 部分,约十几小时。 模型构建:DQN 的网络模型采用一层 128 个神经元的全连接并以 ReLU 作为激活函数,选用简单的两层网络结构。 数据缓存:需要一个缓存区来存放从环境中采样的数据。 训练函数:批量从缓存区获取数据,使用 DQN 算法进行训练。 主循环函数:在每个 episode 中,选择一个动作(使用 εgreedy 策略),执行该动作,并将结果存储在 replay buffer 中。训练完使用保存好的 model.pth 参数即可实际使用。 4. Qlearning 算法流程: 初始化 Q。 for 序列 e = 1 > E do: 用 ε Greedy 策略根据 Q 选择当前状态 s 下的动作 a,得到环境反馈的 r,s‘,得到初始状态 s。 for 时间步 t = 1> T do: End for。 End for。 例如,在当前智能体处于 s1 状态时,会在表中找最大 Q 值对应的行动。获取 Q(s1,下)乘上衰减值 gamma(如 0.9)并加上到达下一个状态时的奖励 R,作为现实中 Q(s1,下)的值(即“Q 现实”),之前根据 Q 表得到的 Q(s1,下)是“Q 估计”。有了“Q 现实”和“Q 估计”,可按公式更新 Q(s1,下)的值。公式中,α是学习率,γ是对未来 reward 的衰减值。启动程序训练 100 次后可较好地进行游戏。
2024-11-21
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
学习ai思路,完整步骤流程
以下是新手学习 AI 的完整步骤流程: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,以“Windsurf 零基础开发”为例,AI 开发网站的操作步骤如下: 1. 开发目标:以“Windsurf 学习共创社区”为例,借助 AI 能力快速构建现代化 Web 应用。 2. 技术选型:Vue + TypeScript。 3. 目标用户:零基础开发学习者。 4. 参考项目:Cursor101。 5. 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 在开发过程中,输入需求让 windsurf 进行 code,它会将开发思路讲解并给出环境命令,可能会出现报错,将报错信息返回给 cascade,经过自动检查后修复 bug,不断优化细节,如优化导航栏和首页,插入细节图片等。
2025-04-14