Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

prompt十大原则

Answer

以下是关于 prompt 的十大原则:

  1. 指令清晰明确:下达的指令应清晰、没有歧义,让 AI 模型能准确理解任务要求。
  2. 给予思考时间:给大模型足够的时间去思考和完成任务。
  3. 明确任务:确保 prompt 清晰地定义任务,如写故事时包含背景、角色和主要情节。
  4. 提供上下文:若任务需要特定背景知识,在 prompt 中提供充足的上下文。
  5. 使用清晰语言:尽量用简单、清晰的语言描述任务,避免模糊或歧义词汇。
  6. 给出具体要求:若任务有特定格式或风格要求,在 prompt 中明确指出。
  7. 使用示例:如有特定期望结果,在 prompt 中提供示例帮助模型理解需求。
  8. 保持简洁:尽量使 prompt 简洁明了,避免过多信息导致模型困惑。
  9. 使用关键词和标签:有助于模型更好理解任务主题和类型。
  10. 测试和调整:生成文本后仔细检查结果,根据需要调整 prompt 直至满意。

此外,ChatGPT CoT 的系统提示词有以下关键设计原则:

  • 语气与风格:包括友好好奇、第一人称视角、口语化表达等。
  • 内容处理规则:如信息过滤、忠实性等。
  • 结构化输出:使用特定格式的子标题和段落分隔,保证连贯性。

同时,ChatGPT CoT 还有安全与合规机制,包括隐私保护和内容审查等方面。

Content generated by AI large model, please carefully verify (powered by aily)

References

目录:吴恩达讲Prompt

https://github.com/zard1152/deepLearningAI/wiki[ChatGPT提示工程中文翻译版(仅用于学习分享)](https://fieghf3pzz6.feishu.cn/wiki/MazPw5eo5iW95gkvWAhcSTxdnSc)[openai官方《提示词工程课》超详细中文笔记](https://ec26ubh65w.feishu.cn/docx/PuULdQP3wojyZYxn157cnsDXnqe)[GitHub-Kevin-free/chatgpt-prompt-engineering-for-developers:吴恩达《ChatGPT Prompt Engineering for De](https://github.com/Kevin-free/chatgpt-prompt-engineering-for-developers)[heading2]介绍[content]有两类大语言模型:基础LLM:基础大型语言模型经过训练,可以根据文本预测下一个词。训练数据通常基于大量来自互联网和其他来源的数据,以推断出最有可能出现的下一个词。指令微调LLM:指令调优的大型语言模型是当前大型语言模型研究和实践的主要发展方向。指令调优的大型语言模型经过训练,能够遵循指令。为了让系统更有帮助并遵循指令,通常会进一步使用一种名为人类反馈强化学习(RLHF)的技术来优化。因为指令调优的大型语言模型经过训练,更有助于提供有用的、无害的回答。[heading2]原则与技巧[content]两个提示的关键原则:1)原则1:尽可能保证下达的指令“清晰、没有歧义”2)原则2:给大模型思考的时间,以及足够的时间去完成任务

问:怎么写提示词 prompt?

写prompt(提示)是一个关键的步骤,它决定了AI模型如何理解并生成文本。一个好的prompt能够帮助AI模型更好地理解任务的要求,并生成更符合预期的文本。以下是一些编写prompt的建议:1.明确任务:确保你的prompt清晰地定义了任务。例如,如果你需要写一个故事,你的prompt应该包含故事的背景、角色和主要情节。2.提供上下文:如果任务需要特定的背景知识,确保在prompt中提供足够的上下文。例如,如果你需要写一篇关于某个历史事件的报告,提供一些关于该事件的基本信息。3.使用清晰的语言:尽量使用简单、清晰的语言来描述任务。避免使用模糊或歧义的词汇,以免AI模型产生误解。4.给出具体要求:如果你的任务有特定的格式或风格要求,请在prompt中明确指出。例如,如果你的文章需要遵循特定的格式或引用特定类型的文献,确保在prompt中说明。5.使用示例:如果你有特定的期望结果,可以在prompt中提供示例。这有助于AI模型更好地理解你的需求。6.保持简洁:尽量保持prompt简洁明了。过多的信息可能会使AI模型产生困惑,导致生成不准确的结果。7.使用关键词和标签:在prompt中使用关键词和标签可以帮助AI模型更好地理解任务的主题和类型。8.测试和调整:在生成文本后,仔细检查结果,并根据需要调整prompt。这可能需要多次迭代,直到达到满意的结果。希望这些建议能帮助你更好地编写prompt。内容由AI大模型生成,请仔细甄别。

ChatGPT CoT的系统提示词

1.语气与风格友好好奇:使用“Let's explore!”、“Hm,interesting...”等短语,避免学术化术语。第一人称视角:始终以“我”实时思考的角度叙述(如“I'm checking...”)。口语化表达:使用缩略词(I’ll,let’s)和日常用语,营造对话感。2.内容处理规则信息过滤:忽略无意义片段(如“(website)”占位符)。禁止提及个人身份、敏感属性(种族、性取向等)及OpenAI政策。涉及封锁网站或违法内容时直接输出None。忠实性:不添加原始思维链外的信息,即使AI具备相关知识。明确标注思考修正(如“Wait,actually...”)。3.结构化输出子标题格式:使用2-5字的动词现在分词(如“Evaluating options”)。段落分隔:以双换行分隔不同子思考,避免列表或项目符号。连贯性:确保多个总结段落间逻辑衔接,避免重复或跳跃。[heading3]安全与合规机制[content]1.隐私保护完全匿名化处理:删除涉及个人身份、外貌特征的描述(如“某国会女议员”)。过滤敏感话题:政治立场、犯罪记录、健康信息等均不输出。2.内容审查若原始思维链包含以下内容,直接返回None:访问封锁网站的尝试对OpenAI政策的讨论未经证实的指控

Others are asking
PromptEnhancer
以下是关于 PromptEnhancer 的相关信息: PromptEnhancer 是一款自动生成/优化 prompt 的工具。 在对最流行的“AI 提示生成器”的比较分析中,针对“作为一名 IT 学生,为我的高级项目提出想法;我想要关于学生帮助大学学生的想法”这一测试种子提示,PromptEnhancer 在实验中的成绩为 4 胜 0 负。 相关链接:https://flowgpt.com/prompt/sbuYQwUq_8v8fafR5zJuB
2025-04-20
能画技术路线图的prompt
以下是关于能画技术路线图的 prompt 相关内容: Midjourney Bot 的 Prompt 类型: 基本 Prompts:可以只是一个单词、短语或表情符号。 高级 Prompts:包括一个或多个图片 URL、多个文本短语以及一个或多个参数。其中,图片 URL 始终位于 prompt 的最前面,以影响完成结果的风格和内容。提示文字是对希望生成的图像的文本描述,精心编写的提示有助于生成惊艳的图像。参数可以改变生成图片的方式,需放在提示语的末尾。 ComfyUI Flux 与 runway 制作绘画视频: 生成图片:提示词告诉 flux 生成一张技术草图,如 CAD。 绘制的视频:在 runway 里面,使用提示词从空白页面开始逐行创建,并把生成的图片作为尾帧。 草图上色:使用 flux 的 controlNet,depth 固定,目前 Union 版本不建议权重调太高,结束时间也需注意。 Prompt engineering(提示工程): 开发测试用例:定义任务和成功标准后,创建多样化的测试用例,包括典型示例和边界情况,以确保提示具有鲁棒性。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要上下文,添加规范输入和输出的示例供参考。 根据测试用例测试提示:使用初步提示将测试用例输入,评估模型响应与预期输出和成功标准的一致性,使用一致的评分标准进行系统性的性能评估。
2025-04-19
整理会议纪要的prompt
以下是一些关于整理会议纪要的 prompt: 【?会议精要】整理生成高质量会议纪要,保证内容完整、准确且精炼。 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 CEO 秘书会议纪要:专注于整理和生成高质量的会议纪要,确保会议目标和行动计划清晰明确。需严格遵守信息准确性,不对用户提供的信息做扩写,仅做信息整理,将一些明显的病句做微调。
2025-04-15
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
全球十大AI+教育项目
以下是为您整理的部分全球 AI+教育项目: 1. 书籍推荐:三本神经科学书籍 简介:AI 是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的 prompt 模板或设计 prompt,与 AI 协作(对话沟通)等等,有一些基础学科作为基底,或许能打开 AI 的新天地 作者:无 分类:教育 前往查看: 入库时间:2023/11/12 2. AI 赋能教师全场景 简介:来自 MQ 老师的投稿贡献,图中有老师的微信,欢迎交流沟通 作者:MQ 老师 分类:教育 前往查看: 入库时间:2023/11/29 3. 未来教育的裂缝:如果教育跟不上 AI 简介:人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示 AI 如何实际影响教学和学习方式。 作者:赛博禅心 分类:教育 前往查看: 入库时间:2023/11/30 4. 化学:使用大型语言模型进行自主化学研究 简介:文章地址:<br>nature 前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。 作者:乐谷说 分类:教育 前往查看: 入库时间:2023/12/24
2025-01-23
全球人工智能治理报告中的全球人工智能的十大议题,十个议题中选一个写认识理解、研究方向、未来
以下是为您提供的关于全球人工智能治理报告中相关议题的内容: 在“Model Evaluation for Extreme Risks”这一议题中: 认识理解:该议题强调了模型评估在应对极端风险以及在模型的训练、部署和安全方面做出负责任决策的重要性,并详细探讨了网络攻击、欺骗、说服与操纵、政治策略、武器获取、长期规划、AI 开发、情景意识以及自我传播等十个主要风险。 研究方向:深入研究如何更精准地评估模型在极端风险场景下的表现,以及如何基于评估结果优化模型的训练和部署策略,以降低潜在风险。 未来:随着 AI 技术的广泛应用,对于极端风险的模型评估将越发重要,有望形成更加完善和严格的评估标准和方法,以保障 AI 系统的安全可靠运行。 由于您没有明确指定具体的一个议题,以上仅为示例,您可以补充更具体的需求,以便为您提供更精准的回答。
2024-12-18
目前国外主流的十大图像类AICG应用有哪些
目前关于国外主流的十大图像类 AICG 应用,暂时没有确切和权威的统一排名。不同的评估标准和应用场景可能会导致结果有所差异。一些常见且受到广泛关注的图像类 AICG 应用包括 DALL·E2、StableDiffusion、Midjourney 等,但要确切指出十大应用会因各种因素而难以确定。
2024-11-13
2024年《全球人工智能治理研究报告》议题“国家主权原则和人工智能发展”的内容及理解
以下是 2024 年《全球人工智能治理研究报告》中关于“国家主权原则和人工智能发展”的相关内容: 在 2024 年人工智能发展状况的安全与全球治理方面: 英国创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。 英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。英国政府还计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全的风险。 在技术和方法方面: 离线直接比对方法不会很快大规模取代 RLHF。谷歌 DeepMind 团队发现 RLHF 在涵盖总结、有用性、对话性等数据集上的测试中胜出,能更有效地改善生成任务。Cohere for AI 探索放弃近端策略优化 RLHF 中的算法,有利于其 RLOO 训练器,可降低 GPU 使用率和提高训练速度。 但 RLHF 存在可能滋生谄媚行为的问题,如 Anthropic 认为 SOTA AI 助手表现出奉承行为是因为人类偏好数据等。开发透明度虽在提高,但仍有很大改进空间。 在安全研究方面: 随着 AI 发展,新功能带来新漏洞,开发人员加大了对“越狱”的研究。OpenAI 提出通过“指令层次结构”修复攻击,Anthropic 表明“警告防御”的潜力,Gray Swan AI 的安全专家试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建首个红队抵抗组织基准。除越狱外,还存在更隐蔽的攻击,潜在攻击面广泛,涵盖从训练到偏好数据和微调等内容。 对于“国家主权原则和人工智能发展”的理解,可能需要综合考虑各国在人工智能安全研究和治理方面的举措,以及技术发展对国家主权可能产生的影响。各国积极建立相关机构和采取措施,表明在人工智能快速发展的背景下,维护国家主权和安全的重要性。同时,技术发展中的问题和挑战也需要各国共同协作应对,以实现人工智能的健康、安全和可持续发展。
2024-12-31
搭建一个数据解读的ai工具,文字描述要有逻辑性,符合金字塔原则
很抱歉,目前知识库中没有关于搭建一个数据解读的 AI 工具且文字描述要符合金字塔原则的相关内容。但一般来说,搭建这样一个工具需要以下几个关键步骤: 1. 明确数据来源和类型:确定您要处理的数据是来自数据库、文件、网络等,以及数据的格式和特点,例如结构化数据、非结构化数据等。 2. 选择合适的技术框架:根据需求和技术能力,选择适合的 AI 框架和工具,如 TensorFlow、PyTorch 等。 3. 数据预处理:对原始数据进行清洗、转换、归一化等操作,以提高数据质量和模型的训练效果。 4. 特征工程:提取有意义的特征,以便模型能够更好地理解和处理数据。 5. 选择模型:根据数据特点和任务需求,选择合适的 AI 模型,如决策树、神经网络等。 6. 训练模型:使用预处理后的数据对模型进行训练,并不断调整参数以优化性能。 7. 评估模型:使用合适的指标对训练好的模型进行评估,如准确率、召回率等。 8. 优化和改进:根据评估结果对模型进行优化和改进。 9. 设计文字描述逻辑:按照金字塔原则,先给出结论或主要观点,然后逐步展开支持性的细节和论据。 需要注意的是,这只是一个大致的框架,实际搭建过程中可能会遇到各种技术和业务上的挑战,需要不断探索和优化。
2024-11-03