Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用deepseek写法学本科论文 有哪些指令

Answer

DeepSeek 可用于法学本科论文写作,以下是一些相关指令和方法:

  1. 文风转换矩阵:
    • 作家风格移植:例如“用鲁迅杂文风格写职场 PUA 现象”。
    • 文体杂交:比如“将产品说明书改写成《史记》列传格式”。
    • 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话”。
  2. 领域穿透技术:行业黑话破解,如“解释 Web3 领域的'胖协议瘦应用'理论”。
  3. 效能增强技巧:
    • 对话记忆管理:包括上下文锚定(“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(“请复述之前确认的三个设计原则”)、焦点重置(“回到最初讨论的供应链问题”)。
    • 输出质量控制:针对不同问题类型进行修正,如过度抽象(“请具体说明第三步操作中的温度控制参数”)、信息过载(“用电梯演讲格式重新组织结论”)、风格偏移(“回归商务报告语气,删除比喻修辞”)。
  4. 特殊场景解决方案:
    • 长文本创作:采用分段接力法(“先完成故事大纲→逐章扩展→最后进行伏笔校验”)和逻辑粘合剂(“确保新章节与前文的三处细节呼应”)。

需要注意的是,使用 DeepSeek 辅助写作时,仍需您自身对法学知识的深入理解和研究,以确保论文的学术性和专业性。

Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

|指令结构|效果示例||-|-||作家风格移植|"用鲁迅杂文风格写职场PUA现象"||文体杂交|"将产品说明书改写成《史记》列传格式"||学术口语化|"把这篇论文摘要翻译成菜市场大妈能听懂的话"|[heading3]2.领域穿透技术[content]行业黑话破解→"解释Web3领域的'胖协议瘦应用'理论"[heading2]三、场景化实战策略[heading3]商业决策支持[heading3]创意内容生成[heading3]技术方案论证[heading2]四、效能增强技巧[heading3]对话记忆管理[content]上下文锚定:"记住当前讨论的芯片型号是麒麟9010"信息回溯:"请复述之前确认的三个设计原则"焦点重置:"回到最初讨论的供应链问题"[heading3]输出质量控制[content]|问题类型|修正指令||-|-||过度抽象|"请具体说明第三步操作中的温度控制参数"||信息过载|"用电梯演讲格式重新组织结论"||风格偏移|"回归商务报告语气,删除比喻修辞"|[heading2]五、特殊场景解决方案[content]1.长文本创作分段接力法:"先完成故事大纲→逐章扩展→最后进行伏笔校验"逻辑粘合剂:"确保新章节与前文的三处细节呼应"1.敏感内容处理概念脱敏法:"用经济学原理类比说明网络审查机制"场景移植法:"假设在火星殖民地讨论该议题"

?全新AI整活计划:DeepSeek小说家 2025年2月9日

[heading2]总结关于提示词编写及AI应用的探讨理性决策提示词:介绍了用于不确定世界中理性决策的提示词编写方法,包括收集信息、重新定义问题、运用Mini Max Regret方法等步骤。示例的价值:示例是一种隐性的需求说明书,添加示例可让大模型更懂需求,但Deseek R1报告中提到few short可能影响模型性能,不过不绝对。自用与他用提示词:自用和他用的提示词在稳定性、经济性、可维护性等方面有较大区别,工业化提示词需稳定、经济且易维护。改进指令遵循:将R1的思维链给cloud回答,结果大大改进。AI应用于软件开发:未来借助AI模型的API和编写提示词,可快速实现软件开发,如开发查单词软件。关于AI写作与模型的探讨顶级文学作品:分享了一篇在小红书上看到的优秀小说,其文风细腻、语言克制,每个片段、隐喻和比喻都精心设计。写作方式思考:认为写小说既需要精心设计也需要直觉创作,如莫言的作品有凭直觉写作的特点,而推敲则是精心琢磨的代表,两种方式不冲突。好文字的定义:好的文字能引起生理共鸣和情绪,若能引起众多人的共鸣则可能成为公认的佳作。****:用Deepseek写小说要能引起共鸣和考虑人类共性,文字要感动人。模型特点与推荐:指出Cloud 3.5模型多样性差,Deepseek R1有缺陷但也不错,推荐了街悦新城的文学大师版等模型。

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
我是医科大学的本科学生,我现在想用Ai帮助我书写论文和报告,我应该怎么系统学习?
以下是一些系统学习利用 AI 帮助书写论文和报告的建议: 一、了解常用的 AI 工具和平台 1. 文献管理和搜索 Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作 Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析 Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式 LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测 Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 二、学习使用 AI 辅助撰写论文和报告的方法 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。 三、注意事项 1. AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。 2. 保持科学的态度和方法,遵循科学伦理原则。 3. 了解现阶段 AI 在教育领域应用的局限性,如知识适配的层次性问题、教育应用的安全性考量等。 希望以上内容对您有所帮助。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
如何用AI写出一篇完美的本科毕业论文且AI率低查重率低
目前依靠 AI 直接写出一篇完美的本科毕业论文且保证低 AI 率和低查重率是不可取的。撰写本科毕业论文需要您自己深入研究课题、收集资料、整理思路并进行独立创作。 虽然 AI 可以在一些方面提供帮助,比如语言润色、提供思路参考等,但不能完全依赖它来完成整篇论文。如果过度依赖 AI 生成的内容,可能会导致论文缺乏创新性和个人见解,并且存在较高的查重风险。 建议您在撰写论文时,首先明确研究课题和目标,通过图书馆、学术数据库等渠道收集相关的权威资料,整理自己的观点和论证逻辑,然后逐步撰写论文的各个部分。在写作过程中,可以适当使用 AI 工具来检查语法错误、优化表述,但务必对其提供的内容进行审慎评估和修改,确保论文的原创性和学术规范性。
2025-04-09
如何用ai写一篇本科毕业论文
使用 AI 写本科毕业论文需要谨慎,虽然可以借助其提供帮助,但不能完全依赖。以下是一些可能的步骤和注意事项: 1. 明确论文的主题和要求:清晰地确定您的研究方向、问题和目标。 2. 提供详细的背景信息:例如您的研究领域、相关课程学习经历、个人观点等。 3. 向 AI 提出具体的指令:例如“根据以下信息,为我生成一篇关于的本科毕业论文大纲”。 4. 对 AI 生成的内容进行评估和修改:AI 生成的内容可能存在不准确、不完整或不符合学术规范的地方,需要您进行仔细的检查和修正。 需要注意的是,使用 AI 写论文并非道德的方式,并且可能存在各种问题。接收方也需要做好检测 AI 生成内容的准备。同时,您可以通过学校教务系统查询相关的论文格式要求等信息。
2025-03-22
我想写一篇本科生论文,给出我需要的所有用于ai写论文用的指令
以下是利用 AI 写本科生论文的一些指令和步骤: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析(若涉及):如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-03-20
帮我生成一个本科的论文题目,专业是学前教育,要有数据分析
以下为您生成几个关于学前教育专业且包含数据分析的本科论文题目,供您参考: 1. 《基于数据分析的学前教育课程设置对幼儿发展的影响研究》 2. 《学前教育中幼儿游戏行为的数据分析与教育策略研究》 3. 《通过数据分析探究家庭环境对学前儿童心理健康的影响》 4. 《基于大数据分析的学前教育师资培训效果评估》 5. 《利用数据分析研究学前教育机构设施配备与幼儿学习效果的关系》
2025-03-16
作为一个法学本科生,人工智能小白,我可以从那些角度去深入学习人工智能,以达到可以参加人工智能开发的地步
对于法学本科生且人工智能小白的您,想要达到可以参加人工智能开发的地步,可以从以下角度深入学习人工智能: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,由于库和框架的支持不断增加,机器学习开始变得越来越流行。但要实现落地 AI 行业,我们必须了解这些代码背后的逻辑。一旦取消了现有框架的支持,了解这些框架背后的数学细节,编写这些算法中包含的复杂模式就会显得非常重要。至少需要了解概率、统计、线性代数、微积分和图论方面的知识。有了具体的数学知识,我们就可以充分利用机器学习的潜力,比如: 1. 凭借算法背后的内联数学知识,为数据集选择最佳算法。 2. 利用正则化器背后的数学知识帮助解决模型过拟合或高方差问题。 3. 利用图论的知识来分析数据特征之间更复杂的关系。 4. 利用优化器背后的数学知识来设计适当的成本函数。 机器学习需要的数学知识水平相对比较主观,取决于每个人的具体需求。比如正在进行机器学习的底层研究,可能需要具有深厚的数学知识,因为研究要求彻底深入。但对单纯的应用者来说,可能不需要任何高等数学的相关知识,掌握 prompt 的基础框架就可以很好的应用。
2025-03-15
帮助精读法学文献的AI
帮助精读法学文献的AI工具可以显著提高法律研究的效率和准确性。以下是一些可以帮助你精读和分析法学文献的AI工具和平台: 1. CaseText 简介:CaseText 是一个法律研究平台,利用AI技术帮助用户查找、阅读和分析法律文献。 功能特点: CARA AI:可以根据上传的法律文档自动推荐相关案例和法律资源。 智能搜索:提供上下文相关的搜索结果,帮助找到最相关的法律文献。 法律分析:分析和总结法律文献中的关键点和判决理由。 2. ROSS Intelligence 简介:ROSS Intelligence 是一个基于AI的法律研究工具,旨在帮助法律专业人士更快地找到相关法律信息。 功能特点: 自然语言搜索:允许用户以自然语言提出法律问题,AI提供相关的法律文献和案例。 判例法分析:快速分析大量判例法,提取关键判决和法律原则。 文档审查:帮助审查法律文档,找出潜在的问题和风险。 3. LexisNexis 简介:LexisNexis 是一个综合性的法律研究平台,提供丰富的法律文献数据库和AI分析工具。 功能特点: Lexis Analytics:利用AI技术分析法律趋势、判决和法规,提供数据驱动的见解。 Shepard's® Citation Service:跟踪和分析案例法的引用,了解判例的法律效力和应用情况。 智能搜索和摘要:提供智能搜索功能,自动生成法律文献的摘要和关键点。 4. Westlaw Edge 简介:Westlaw Edge 是由 Thomson Reuters 提供的法律研究平台,整合了先进的AI技术。 功能特点: WestSearch Plus:使用AI技术进行上下文搜索,提供精准的法律文献结果。 Quick Check:分析和对比法律文档,找出遗漏或不一致之处。 KeyCite:追踪判例和法规的历史和引用,了解其法律地位和适用范围。 5. Judicata 简介:Judicata 是一个专注于法律分析的AI工具,提供深入的法律文献分析。 功能特点: 解析法律文档:细致解析法律文档,提取关键条款和判决理由。 法律图谱:通过图谱展示法律文献之间的关系,帮助理解法律原则的适用。 风险分析:评估法律文档中的风险和潜在问题,提供改进建议。 6. Casemine 简介:Casemine 是一个利用AI技术的法律研究平台,提供智能案例法分析和文献推荐。 功能特点: CaseIQ:智能分析案例法,提供相关的法律文献推荐。 判决理由提取:自动提取和总结判决理由,帮助快速理解案件关键点。 互动式法律研究:通过互动式界面,快速找到相关的法律文献和案例。 使用建议 1. 选择适合的工具:根据你的具体需求(如搜索、分析、审查等),选择最适合的工具。 2. 学习使用功能:熟悉工具提供的各种功能和界面,充分利用其AI分析和搜索能力。 3. 结合人工分析:尽管AI工具可以显著提高效率,仍需结合人工分析,确保对法律文献的理解和应用准确无误。 4. 保持更新:法律和技术都在不断变化,定期更新工具和数据库,确保使用最新的法律文献和AI技术。 通过这些AI工具,你可以更加高效地精读和分析法学文献,提高法律研究的质量和效率。
2024-05-26
写作指令
以下是关于写作指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有规定。 敕代表告诫,明确工作中的禁忌事项和具体要求。 令包括初始化时的欢迎语,牢记符与敕的要求,先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 熊猫 Jay:万字解读 ChatGPT 提示词最佳实践: 最佳实践 1 是编写清晰的指令。 策略包括在查询中包含详细信息以获得更相关答案,要求模型扮演某个角色,使用分隔符清晰表示输入不同部分,指定完成任务所需步骤,提供示例,指定输出期望长度,提供参考文本。 策略 1 适用于新手,难度为 1 星,价值在于提供更多详细信息可获得更准确具体答案,减少模型猜测和误解,提高交互效率和满意度。 策略 2 适用于新手,难度为 1 星,通过指定角色使模型回答更具特色和针对性,提升输出质量。 OpenAI 官方提示工程指南: 撰写清晰的指令,模型无法读心,可根据输出情况要求调整。 技巧包括在查询中添加详细信息以获得更准确答案,请求模型扮演特定角色,使用分隔符清晰区分输入不同部分,明确指出完成任务需要的步骤,提供实例作为参考,明确指定希望输出的长度。
2025-04-14
ai降重指令
以下是关于 AI 降重指令的相关知识: Prompt 是用于指挥 AI 生成所需内容的一段指令,每个单独的提示词叫 tag(关键词)。支持的语言为英语(不用担心英语不好的问题,),emoji 也可以用。 语法规则: 用英文半角符号逗号,来分隔 tag,逗号前后有空格或者换行都不影响效果。 改变 tag 权重:tag 的顺序越靠前对于 SD 来说权重越大,可通过两种写法设置权重。一是 括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。 进行 tag 的步数控制(高级玩法):即 SD 先按输入的 tag1 开始生成,然后在达到设定的步数之后,tag1 停止产生作用,此时 tag2 再参与到对内容生成的影响,可表示为,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
用deepseek写一份课题申报书,请提供相关指令
以下是一些用 DeepSeek 写课题申报书的相关指令和要点: 1. 思维链引导: 分步标记法:请逐步思考,如问题分析→方案设计→风险评估。 苏格拉底式追问:在得出最终结论前,先列举三个可能存在的认知偏差。 2. 知识库调用: 领域限定指令:基于特定的标准或文献,如 2023 版中国药典,说明相关内容。 文献引用模式:以特定的论文为参考,解释相关突破。 3. 多模态输出: 模糊指令优化:对于宽泛需求添加维度约束,将主观表述量化标准。 迭代优化法:包括首轮生成获取基础内容、特征强化、风格调整和最终校验等步骤。 4. 在课题申报书的内容方面: 关于提示词编写及 AI 应用的探讨:介绍用于不确定世界中理性决策的提示词编写方法,包括收集信息、重新定义问题、运用 Mini Max Regret 方法等步骤。注意示例的价值,自用与他用提示词在稳定性、经济性、可维护性等方面的区别。 AI 应用于软件开发:未来借助 AI 模型的 API 和编写提示词,可快速实现软件开发。 关于写作与模型:用 DeepSeek 写小说要能引起共鸣和考虑人类共性,文字要感动人。注意模型特点与推荐,如 Cloud 3.5 模型多样性差,DeepSeek R1 有缺陷但也不错。 以上内容仅供参考,您可以根据具体的课题需求进一步调整和完善。
2025-04-11