Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

入门经典必读

Answer

以下是一些入门经典必读的资源:

  • 作者为 Derrick Harris、Matt Bornstein 和 Guido Appenzeller 的文章,原文地址:https://a16z.com/2023/05/25/ai-canon/ 。文中提到人工智能研究增长迅速,对于初学者和专家都有一定难度,因此分享了用于深入了解现代 AI 的精选资源列表,称为“AI 典藏”,包括对 Transformer 和 Latent Diffusion 模型的介绍,技术学习资源、构建大型语言模型的实用指南、AI 市场分析以及里程碑式研究成果的参考列表等。
  • 《Transformers,explained》(https://daleonai.com/transformers-explained):由 Dale Markowitz 撰写,是对“什么是 LLM,它是如何工作的?”的更短、更直接回答,有助于轻松进入主题并建立直观理解,适用于新模型。翻译:[解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型](https://ywh1bkansf.feishu.cn/wiki/WCOcwp3DYiNj2mkiGVycjJ0Znaf)
  • 《How Stable Diffusion works》(https://mccormickml.com/2022/12/21/how-stable-diffusion-works/):Chris McCormick 为非专业人士解释了 Stable Diffusion 的工作原理,从文本到图像模型的角度帮助建立直观理解。翻译:[稳定扩散(Stable Diffusion)是如何运作的](https://ywh1bkansf.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc)
  • 入门文章的翻译:
    • 《软件 2.0》(https://ywh1bkansf.feishu.cn/wiki/FFJawIKRpi77JokULCvcjIPBnBv),作者 Andrej Karpathy,他最早清楚解释了新的 AI 浪潮的重要性,论点为 AI 是一种新的强大的编程计算机的方式。
    • 《GPT 的现状》(https://ywh1bkansf.feishu.cn/wiki/IXjfwF9l9iX0IzkUg1Ec0Vcinx3),作者 Andrej Karpathy,是对 ChatGPT/GPT 模型工作原理、使用方法及研发方向的容易理解的解释。
    • 《ChatGPT 是在做什么,为什么它有效?》(https://ywh1bkansf.feishu.cn/wiki/LnMOwmKIwihcRakRalcczNgrnjf),作者 Stephen Wolfram,从早期神经网络到现代 AI 模型的工作原理进行了长而易读的解释。
    • 《解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型》(https://ywh1bkansf.feishu.cn/wiki/WCOcwp3DYiNj2mkiGVycjJ0Znaf),作者 Dale Markowitz,对“什么是 LLM,它是如何工作的?”进行了更短、更直接的回答,有助于轻松进入主题并建立直观理解。
Content generated by AI large model, please carefully verify (powered by aily)

References

入门经典必读

作者:[Derrick Harris](https://a16z.com/author/derrick-harris/),[Matt Bornstein](https://a16z.com/author/matt-bornstein/)和[Guido Appenzeller](https://a16z.com/author/guido-appenzeller/)原文地址:https://a16z.com/2023/05/25/ai-canon/译者:通往AGI之路后半部分:[目录:a16z推荐进阶经典](https://ywh1bkansf.feishu.cn/wiki/EXX1w3QyFiBz8fknLFYce7gvnug)人工智能的研究正在以指数级别的速度增长。对于AI专家来说,跟上所有新发布的内容已经非常困难,对于初学者来说更是难上加难。因此,在这篇文章中,我们分享了一份我们信赖的、用于更深入了解现代AI的精选资源列表。我们称之为“AI典藏”,因为这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

入门经典必读

[Transformers,explained](https://daleonai.com/transformers-explained):这篇文章由Dale Markowitz撰写,是对“什么是LLM,它是如何工作的?”这个问题的一个更短、更直接的回答。这是一种很好的方式,可以轻松地进入这个主题,并对这项技术建立直观理解。这篇文章是关于GPT-3的,但仍适用于新的模型。翻译:[解析Transformer模型:理解GPT-3、BERT和T5背后的模型](https://ywh1bkansf.feishu.cn/wiki/WCOcwp3DYiNj2mkiGVycjJ0Znaf)[How Stable Diffusion works](https://mccormickml.com/2022/12/21/how-stable-diffusion-works/):这是一篇与上一篇文章在计算机视觉领域的对应文章。Chris McCormick为非专业人士解释了Stable Diffusion是如何工作的,并从文本到图像模型的角度,帮助你对这种技术建立直观理解。如果你希望更轻松地理解这个概念,可以查看来自r/StableDiffusion的这个[漫画](https://www.reddit.com/r/StableDiffusion/comments/zs5dk5/i_made_an_infographic_to_explain_how_stable/)。翻译:[稳定扩散(Stable Diffusion)是如何运作的](https://ywh1bkansf.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc)

入门经典必读

|多行文本|作者|备注|链接|附件||-|-|-|-|-||软件2.0|Andrej Karpathy|Andrej Karpathy是最早清楚解释(在2017年!)为什么新的AI浪潮真正重要的人之一。他的论点是,AI是一种新的、强大的编程计算机的方式。随着大语言模型(LLMs)的快速改进,这个论点被证明是有先见之明的,并为AI市场的可能进展提供了一个良好的思维模型。|[软件2.0(Software 2.0)](https://ywh1bkansf.feishu.cn/wiki/FFJawIKRpi77JokULCvcjIPBnBv)|||GPT的现状|Andrej Karpathy|这也是Karpathy的文章,这是一个非常容易理解的解释,说明了ChatGPT/GPT模型一般如何工作,如何使用它们,以及研发可能采取的方向。|[GPT的现状(State of GPT)](https://ywh1bkansf.feishu.cn/wiki/IXjfwF9l9iX0IzkUg1Ec0Vcinx3)|||ChatGPT是在做什么,为什么它有效?|Stephen Wolfram|计算机科学家和企业家Stephen Wolfram给出了一篇长而易读的解释,从一开始的原理解释了现代AI模型是如何工作的。他跟随从早期神经网络到今天的LLMs和ChatGPT的时间线|[ChatGPT是在做什么,为什么它有效?](https://ywh1bkansf.feishu.cn/wiki/LnMOwmKIwihcRakRalcczNgrnjf)|||解析Transformer模型:理解GPT-3、BERT和T5背后的模型|Dale Markowitz|这篇文章由Dale Markowitz撰写,是对“什么是LLM,它是如何工作的?”这个问题的一个更短、更直接的回答。这是一种很好的方式,可以轻松地进入这个主题,并对这项技术建立直观理解。这篇文章是关于GPT-3的,但仍适用于新的模型。|[解析Transformer模型:理解GPT-3、BERT和T5背后的模型](https://ywh1bkansf.feishu.cn/wiki/WCOcwp3DYiNj2mkiGVycjJ0Znaf)||群友解读:

Others are asking
学习AI的必读书目
以下是学习 AI 的一些必读书目推荐: 《GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List》:涵盖了人工智能工程的 10 个领域,包括 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调等,适合从零开始的学习者。 对于新手学习 AI,建议先阅读「」部分,熟悉 AI 的术语和基础概念。 还可以在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 三本神经科学相关书籍: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun):世界权威的认知神经科学教材,系统介绍认知神经科学的多个方面。 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz):让您了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的多方面内容。
2025-04-12
检索有关AI入门必读书籍
以下是为您推荐的 AI 入门必读书籍: 1. 「」,有助于熟悉 AI 的术语和基础概念。 2. 「」,其中包含为初学者设计的课程。 3. GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List:涉及人工智能工程的 10 个领域,包括 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调。如果您想从零开始,可以从此处开始。 4. 入门经典必读:作者为 ,原文地址:https://a16z.com/2023/05/25/aicanon/ 。文中分享了一份用于更深入了解现代 AI 的精选资源列表。
2025-03-17
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
七天入门计划
以下是为您提供的七天入门 AI 的计划建议: 第一天: 开始接触李宏毅的生成式人工智能课程。 资源:在 B 站直接搜索《李宏毅 2024 春《生成式人工智能导论》。 第二天至第十四天: 抽空陆续花 2 周时间学完李宏毅的课程。 第五天: 研究并开始使用 Kimi。 参考资料: 。 抱着每天向 kimi 问 100 个问题的心态,调整自己的思考模式,在工作和生活中养成有问题问 AI 的习惯。您还可以参考公众号文章【每天问 Kimi 们 100 个问题,你就 AI 入门了】。 在学习过程中,建议做好笔记,总结所学知识和心得体会,以便更好地掌握和应用。
2025-04-13
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
入门:Ai绘画
以下是为您提供的 AI 绘画入门相关的资源和教程: 在“通往 AGI 之路介绍.pdf”中,有关于 AI 绘画入门的部分,包括产品工具与案例实战,开箱即用。 以下是一些 B 站的视频教程链接: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 还有 SD 新手从 0 入门的 AI 绘画教程,包括以下章节: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 您可以通过以上资源进行学习,祝您在 AI 绘画领域学有所成!
2025-04-10
AI入门
以下是为您提供的 AI 入门的相关指导: 一、Python + AI 入门 在深入学习 AI 时,编程可能会让您感到困难,尤其是对于不会代码的朋友。但别担心,这里有一份 20 分钟的简明入门指南,能帮助您更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 关于 Python: Python 就像哆啦 A 梦,拥有装满各种道具的标准库,遇到问题时可直接使用。若标准库道具不够,还能通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。Python 在 AI 领域被广泛使用,遍地是大哥。 关于 OpenAI API: OpenAI 通过两种方式提供服务,一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 二、JavaScript 的 AI 堆栈入门 尽管当前版本是一个很好的起点,但仍在逐步完善,路线图包括: 1. 交互式 CLI 用于 createaistack,开发人员可选择自己的项目脚手架和依赖项。 2. 用于高级用例的事务性数据库(例如,在问答中保留问题、用户偏好等)。 3. 更多的向量数据库和部署平台选项。 4. 用于开源模型的轻量级微调步骤。 同时,对在创建过程中发挥重要作用的开源项目表示感谢,如 Tailwind、ai sdk、dotenv、Next.js、langchain.js 等。 三、新手学习 AI 的方法 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-10
AI怎样改编经典IP创作
以下是关于 AI 改编经典 IP 创作的相关内容: 在节目单方面,涵盖了视频与影视、音乐与舞蹈等领域。 视频与影视中,有“赛博朋克与未来:AI 未来变化的畅想”,包括脑洞、炫酷的 AI 图片、AI 视频、想象中的 AI 功能展示等内容;“四大名著重生:AI 重新诠释的中国四大名著”,包含经典桥段分镜、AI 图片、AI 视频等。 音乐与舞蹈方面,有“AI 原创歌:AI 制作的音乐”,涉及原创 AI 音乐、AI 视频、音乐版权、AI 图片生视频或转绘视频等;“原创 RAP:AI Rapper 表演”,涵盖原创 RAP、AI Raper、视频驱动等。 在电影制作方面,以 Junie 的首部 AI 长电影为例,制作初衷是为了好玩和为经典故事注入新意。尽管有人质疑其用 AI 制作反 AI 电影的讽刺性,但它为 AI 创作者提供了共同创作机会,带来启示:人类创造力不会被机器取代,AI 电影是电影领域的一部分,不会取代传统电影,而是开辟新的艺术表达方式。同时,AI 技术快速迭代,类似 Sora 的工具将改变对电影的传统认知。未来,强交互的由 AI Agent 驱动的一对一交互媒介可能成为主流。 在音乐创作方面,以《西游不能停》为例,过去一首歌制作流程复杂,需多个环节和角色协作,现在 AI 合并了很多环节,能帮创作者迅速呈现 idea 的 demo 形式,搭起歌曲骨骼框架,让创作者把更多精力投入到更具个人表达的部分,如歌词、音色、节奏等。但 AI 也有不足和缺陷,如生成结果不可控、保真度低等。
2025-01-19
RAG的经典应用场景
RAG(检索增强生成)的经典应用场景主要包括以下方面: 1. 构建智能问答客服:用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 2. 知识问答系统:用户提问后,RAG 从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到提示词中,提交给大模型,大模型的回答会充分考虑到“包含答案的内容”。
2025-01-06
RAG的经典应用场景
RAG(检索增强生成)的经典应用场景主要包括以下方面: 1. 构建智能问答客服:用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 2. 知识问答系统:用户提出问题,RAG 可以从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到提示词中,提交给大模型,大模型的回答会充分考虑到“包含答案的内容”。
2025-01-06
最经典的ai应用场景及其原理
AI 的应用场景非常广泛,以下是一些经典的 AI 应用场景及其原理: 1. 医疗保健: 医学影像分析:AI 可以用于分析医学图像,例如 X 射线、CT 扫描和 MRI,以辅助诊断疾病。 药物研发:AI 可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:AI 可以用于分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:AI 可以用于控制手术机器人,提高手术的精度和安全性。 2. 金融服务: 风控和反欺诈:AI 可以用于识别和阻止欺诈行为,降低金融机构的风险。 信用评估:AI 可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 投资分析:AI 可以用于分析市场数据,帮助投资者做出更明智的投资决策。 客户服务:AI 可以用于提供 24/7 的客户服务,并回答客户的常见问题。 3. 零售和电子商务: 产品推荐:AI 可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。 搜索和个性化:AI 可以用于改善搜索结果并为每个客户提供个性化的购物体验。 动态定价:AI 可以用于根据市场需求动态调整产品价格。 4. 制造业: 预测性维护:AI 可以用于预测机器故障,帮助工厂避免停机。 质量控制:AI 可以用于检测产品缺陷,提高产品质量。 供应链管理:AI 可以用于优化供应链,提高效率和降低成本。 机器人自动化:AI 可以用于控制工业机器人,提高生产效率。 5. 交通运输: 自动驾驶:AI 可以用于开发自动驾驶汽车,提高交通安全性和效率。 交通管理:AI 可以用于优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:AI 可以用于优化物流路线和配送计划,降低运输成本。 无人机送货:AI 可以用于无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育:AI 可以用于个性化学习,为每个学生提供定制化的学习体验。 农业:AI 可以用于分析农田数据,提高农作物的产量和质量。 娱乐:AI 可以用于开发虚拟现实和增强现实体验。 能源:AI 可以用于优化能源的使用,提高能源效率。 总的来说,AI 的应用场景非常广泛,它可以帮助人们解决各种各样的问题,提高效率和生产力,改善生活质量。随着技术的不断发展,AI 的应用场景还将不断扩大和深化。
2024-05-28