Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

GRU模型

Answer

GRU(门控循环单元)是 RNN(递归神经网络)的一种变体。

在创建图像描述模型中,解码器部分包含了 GRU 层。GRU 层接受输入,更新其内部状态,并生成输出。通过传递像文本这样的顺序数据,它可以保持与先前输入(例如先前的单词)的顺序依赖关系。

在 Transformer 出现之前,序列到序列的模型主要依赖于循环神经网络(RNN)或其变种,如长短时记忆网络(LSTM)和 GRU。由于传统方法必须按顺序处理序列,在处理长序列时面临梯度消失或梯度爆炸的问题,而且计算效率不高。

在创建图像描述模型的解码器中,GRU 的输出会进入注意力层,该层混合了来自编码器(图像)和解码器(文本)的信息。解码器本身是一个迭代操作,通过自回归地多次调用,最终可以生成完整的文本。

在代码方面,注意力层有两个输入:gru_output 和 encoder_output。在内部,gru_output 用作注意力的查询和键,而 encoder_output 用作值。

Content generated by AI large model, please carefully verify (powered by aily)

References

8. 创建图像描述模型

09:00和不。所以我们用零值填充移位的部分看起来不错。所以下一部分是模型。大部分模型代码已经在之前的视频中解释过了,所以我将快速过一遍。09:17但是,如果您对此不是很熟悉并且对此很有信心,那么您可以返回到上一张幻灯片并检查编码器和解码器内部发生了什么。09:28所以在这段视频中。所以让我们快速运行这些东西。所以这是编码器,正如你所看到的,我们只是将inception resnet V2应用于图像数据。09:43请注意,在这种情况下,我们冻结了这个cnn的大部分部分,因为我们不需要接受培训。这个模型,基本上这种骨干是预训练的09:56通过在这种情况下使用庞大的数据集图像网络数据集。所以当然,如果你想训练,再次微调,这是可能的,但在这种情况下,我们希望你只保留权重10:10预训练。那么接下来让我们继续解码器。正如我们讨论的那样它有点复杂,在这里你可以找到很多关于注意力层的说明10:25以及解码器的步骤,我们在之前的视频中讨论过。在这里我们可以找到一个定义,这样你就可以找到嵌入层来创建嵌入和第一个GRU层10:41注意力层添加层归一化层和最终的密集层。所以让我们这样定义。所以模型看起来像这个嵌入层GRU attention add layer normalization,然后这个。11:01在定义解码器和编码器之后它有这么多参数,我们可以创建最终模型TF Keras模型并定义输入和输出。正如你所看到的,它有两个输入,11:23图像输入进入编码器,文字输入进入解码器,输出应该是解码器输出。现在模型已准备就绪,但在运行训练之前,我们需要像往常一样定义丢失的功能。11:45因此,就损失而言,我们的模型基本上是一个分类模型,因为解码器为每个类、每个词类、每个词汇生成了很多概率。

机器学习-Transformer的基本工作原理

在Transformer出现之前,序列到序列的模型主要依赖于循环神经网络(RNN)或其变种,如长短时记忆网络(LSTM)和门控循环单元(GRU)。由于这种方法必须按顺序处理序列,这些模型在处理长序列时面临梯度消失或梯度爆炸的问题,而且计算效率不高。而transformer摒弃了这种循环计算模式,用并行模式提升了计算效率(比如我们举例中的“我””喜欢“”什么“”?“),每个元素的计算结果并不依赖于其他元素的计算,自注意力机制允许模型在处理序列的每个元素时考虑到序列中的所有其他元素,这种全局性的信息整合能力极大地提高了模型处理长距离依赖的能力。因此,"Attention is all you need"不仅强调了自注意力机制在Transformer模型中的核心作用,也标志着自然语言处理领域在模型架构上的一次重大转变。此后,基于Transformer的模型如BERT、GPT等在多项自然语言处理任务上都取得成功,也充分证明了这个架构的有效性和通用性。

8. 创建图像描述模型

在代码方面,我们使用来自Keras应用程序的经典InceptionResNetV2作为图像编码器。但同样,这可以是任何其他的图像主干网络。[heading3]文本解码器[content]解码器部分有点复杂,让我们仔细看一下它的组件和工作原理:1.嵌入层:创建词嵌入,将单词转换为向量表示。2.GRU层:GRU(门控循环单元)是RNN(递归神经网络)的一种变体。它接受输入,更新其内部状态,并生成输出。通过传递像文本这样的顺序数据,它可以保持与先前输入(例如先前的单词)的顺序依赖关系。3.注意力层:GRU的输出进入注意力层。这一层混合了来自编码器(图像)和解码器(文本)的信息。这个解码器本身是一个迭代操作。因此,通过自回归地一次又一次地调用它,我们最终可以生成完整的文本。因此,通过传递像文本这样的顺序数据,它可以保持与先前输入的顺序依赖关系,例如先前的单词。GRU输出进入注意力层,该层混合了文本和图像的信息。[heading3]注意力机制[content]在TensorFlow Keras中,我们可以像使用其他层一样,轻松地添加预定义的注意力层。例如,我们可以使用tf.keras.layers.Attention。如果您想使用更多类似Transformer的架构,可以选择tf.keras.layers.MultiHeadAttention,它使用多个注意力头。在注意力层内部,该层从文本数据中关注图像特征,通过这样做,它可以通过混合两种信息来计算注意力分数。在代码中,注意力层有两个输入:gru_output和encoder_output。在内部,gru_output用作注意力的查询和键,而encoder_output用作值。

Others are asking
GRU+CNN模型如何操作
GRU+CNN 模型的操作主要包括以下步骤: 1. 编码器部分:使用预训练的卷积神经网络(CNN),如 Inception Resnet V2,将输入图像转换为一组特征向量。在这种情况下,大部分 CNN 部分被冻结,保留预训练的权重。 2. 解码器部分:结构较为复杂,涉及到注意力机制、嵌入层、GRU 层、添加层归一化层和最终的密集层等。可以找到很多关于注意力层和解码器步骤的说明。 3. 组合模型:将编码器和解码器组合在一起,形成一个完整的图像字幕生成模型。 4. 自定义损失函数:由于任务是生成文本序列且序列长度可能不同,使用稀疏分类交叉熵作为损失函数,并屏蔽填充的部分。 5. 编译模型:编译模型,为开始训练做准备。 6. 训练模型:可以根据需求进行更多训练以获得更好结果。 7. 推理与生成字幕:训练完成后,为新的图像生成字幕。在推理阶段,需要重构解码器模型,使其可以接收额外的 GRU 状态输入,并编写自定义推理循环,一次产生一个单词,直到生成完整句子。
2025-03-05
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14