Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ComfyUI如何学

Answer

以下是学习 ComfyUI 的相关资源和途径:

  1. 网站学习资源:
  2. ComfyUI 共学计划:

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有comfy ui相关的学习资料?

是的,根据搜索结果,有几个网站提供了关于ComfyUI的学习教程:1.ComfyUI官方文档:提供了ComfyUI的使用手册和安装指南,适合初学者和有经验的用户。你可以在[ComfyUI官方文档网站](https://www.comfyuidoc.com/zh/)找到相关信息。2.优设网:提供了一篇详细的ComfyUI入门教程,这篇教程适合初学者,详细介绍了ComfyUI的特点、安装方法以及如何使用ComfyUI生成图像等内容。教程地址是[优设网的ComfyUI入门教程](https://www.uisdc.com/comfyui-3)。3.知乎:有用户分享了ComfyUI的部署教程和使用说明,这篇介绍适合那些已经有一定基础并希望进一步了解ComfyUI的用户。可以在[知乎的ComfyUI介绍](https://zhuanlan.zhihu.com/p/662041596)找到相关教程。4.Bilibili:提供了一系列的ComfyUI视频教程,涵盖了从新手入门到精通的各个阶段。这些视频教程可以帮助用户更直观地学习ComfyUI的使用。可以在[Bilibili的ComfyUI系列教程](https://www.bilibili.com/video/BV14r4y1d7r8/)找到视频教程。这些资源为用户提供了丰富的学习材料,从基础操作到高级技巧,可以帮助用户更好地掌握ComfyUI的使用。内容由AI大模型生成,请仔细甄别。

ComfyUI共学-WaytoAGI共学计划

blogs.com/LIU-QiuXue|课时|资料|时间|讲师|活动记录||-|-|-|-|-||开场<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn38eo81342d3wa924dqhg))|[?《Way to Comfy Master》.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/FkRjbNT8jo9U2qxVkJZc9mpUnhg?allow_redirect=1)<br>ComfyUI共学需求收集(送云平台免费时长):[问卷](https://waytoagi.feishu.cn/wiki/WCRwwy9lkitCX0kZObccbZTgnlc?fromScene=spaceOverview&table=tblvwEtct86bIArS&view=vewoiUIlNk)<br>[8月13日ComfyUI共学](https://waytoagi.feishu.cn/wiki/XTEWwyTkHiFrHokW0EEcr1Vyn4c)|8/13<br>20:00-22:00|佑萌<br>ZHO|||第一课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69))|[8月14日课程](https://waytoagi.feishu.cn/wiki/TJmJwIAuriAEunkAYj4czNw6nWL)|8/14<br>20:00-22:00|郭佑萌|[ComfyUI基础教程—小谈](https://waytoagi.feishu.cn/wiki/InJ6wDFGIic0H7k6YXAcQTFynCg)||第二课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn5l7wdcyo59522t87j2z7?from=from_copylink))|[8月15日基础原理+放大流](https://waytoagi.feishu.cn/wiki/WzohwJSVAi3ad4k9YG7c5kjtnEb)|8/15<br>20:00-22:00|郭佑萌|||第三课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn6a472tbtyxv9jo5z6c45))|[8月16日要点回顾&提示词](https://waytoagi.feishu.cn/wiki/HNBiwABRfi8qygkRZLxchyHPnOh)|8/16<br>20:00-22:00|郭佑萌|作业:[作业+小比赛](https://waytoagi.feishu.cn/wiki/FKLMwlz11i0zMgkMqnucFbrbnbf?table=tblao6ReK9NxXiZN&view=vewWwYpzSn)||第四课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn8147obu7n16au2pcm2ql?from=from_copylink))|[8月20日提示词深度解析+controlnet](https://waytoagi.feishu.cn/wiki/L8jGwr3zRimjKXkHhCNcbTt8n1I)|8/20<br>20:00-22:00|||[heading2]第二期,时间待定

ComfyUI共学-WaytoAGI共学计划

blogs.com/LIU-QiuXue|课时|资料|时间|讲师|活动记录||-|-|-|-|-||开场<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn38eo81342d3wa924dqhg))|[?《Way to Comfy Master》.pdf](https://bytedance.feishu.cn/space/api/box/stream/download/all/FkRjbNT8jo9U2qxVkJZc9mpUnhg?allow_redirect=1)<br>ComfyUI共学需求收集(送云平台免费时长):[问卷](https://waytoagi.feishu.cn/wiki/WCRwwy9lkitCX0kZObccbZTgnlc?fromScene=spaceOverview&table=tblvwEtct86bIArS&view=vewoiUIlNk)<br>[8月13日ComfyUI共学](https://waytoagi.feishu.cn/wiki/XTEWwyTkHiFrHokW0EEcr1Vyn4c)|8/13<br>20:00-22:00|佑萌<br>ZHO|||第一课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn4w986vn7d5kc9tg2zy69))|[8月14日课程](https://waytoagi.feishu.cn/wiki/TJmJwIAuriAEunkAYj4czNw6nWL)|8/14<br>20:00-22:00|郭佑萌|[ComfyUI基础教程—小谈](https://waytoagi.feishu.cn/wiki/InJ6wDFGIic0H7k6YXAcQTFynCg)||第二课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn5l7wdcyo59522t87j2z7?from=from_copylink))|[8月15日基础原理+放大流](https://waytoagi.feishu.cn/wiki/WzohwJSVAi3ad4k9YG7c5kjtnEb)|8/15<br>20:00-22:00|郭佑萌|||第三课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn6a472tbtyxv9jo5z6c45))|[8月16日要点回顾&提示词](https://waytoagi.feishu.cn/wiki/HNBiwABRfi8qygkRZLxchyHPnOh)|8/16<br>20:00-22:00|郭佑萌|作业:[作业+小比赛](https://waytoagi.feishu.cn/wiki/FKLMwlz11i0zMgkMqnucFbrbnbf?table=tblao6ReK9NxXiZN&view=vewWwYpzSn)||第四课<br>([回放链接](https://waytoagi.feishu.cn/minutes/obcn8147obu7n16au2pcm2ql?from=from_copylink))|[8月20日提示词深度解析+controlnet](https://waytoagi.feishu.cn/wiki/L8jGwr3zRimjKXkHhCNcbTt8n1I)|8/20<br>20:00-22:00|||[heading2]第二期,时间待定

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10