Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你整合了哪些大模型

Answer

以下是整合的一些大模型:

  1. Poe:由 Quora 开发,有 APP 版本,支持跨端使用。集成了 Chat GPT、GPT-4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用。但 GPT-4、Claude+产品需要付费订阅使用。访问地址:https://poe.com/
  2. 多模态大模型:
    • Flamingo:代表了一系列视觉语言(VL)模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。
    • BLIP-2:引入了一个资源效率更高的框架,包括用于弥补模态差距的轻量级 Q-Former,实现对冻结 LLMs 的充分利用。利用 LLMs,BLIP-2 可以使用自然语言提示进行零样本图像到文本的生成。
    • LLaVA:率先将 IT 技术应用到 MM 领域。为了解决数据稀缺问题,LLaVA 引入了使用 ChatGPT/GPT-4 创建的新型开源 MM 指令跟踪数据集以及 MM 指令跟踪基准 LLaVA-Bench。
    • MiniGPT-4:提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐。这种有效的方法能够复制 GPT-4 所展示的功能。
    • mPLUG-Owl:提出了一种新颖的 MM-LLMs 模块化训练框架,结合了视觉上下文。为了评估不同模型在 MM 任务中的表现,该框架包含一个名为 OwlEval 的教学评估数据集。
    • X-LLM:陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用 Q-Former 的语言可迁移性,X-LLM 成功应用于汉藏语境。
    • VideoChat:开创了一种高效的以聊天为中心的 MM-LLM 用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。

大型模型主要分为两类:

  1. 大型语言模型:专注于处理和生成文本信息。
  2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。二者在处理的信息类型、应用场景和数据需求方面有所不同。

此外,相对大型模型,还有被设计来完成特定任务的规模较小的模型,例如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫、狗)。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC落地应用大全,40+ 语言大模型案例推荐

推荐指数:?????由Quora(海外问答平台,类似国内知乎)开发,有APP版本,支持跨端使用。主要亮点在于集成了Chat GPT、GPT-4、Claude+、Claude、Dragonfly等模型,同时支持用户自建Chatbot。不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。Dragonfly擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。Claude更擅长创造性回复,配合Poe中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用Chat GPT时的体验(但和Chat GPT一样,Claude也时常会给出一些错误回复,一些问题我会尝试在两个模型中都问一遍提升信息准确性)。此外支持分享用户和模型的对话内容。但GPT-4、Claude+产品需要付费订阅使用。访问地址:[https://poe.com/](https://poe.com/)Poe中的提问引导真的能够启发到用户支持Explore Chatbot,但丰富度不如后续要介绍的Charactermidjourney prompt扩写Chatbot能力很惊人[heading3]

多模态大模型入门指南-长文慎入【持续更新】

如表1所示,对26 SOTA MM-LLMs的架构和训练数据集规模进行了全面比较。随后,简要介绍这些模型的核心贡献并总结了它们的发展趋势。(1)Flamingo。代表了一系列视觉语言(VL)模型,旨在处理交错的视觉数据和文本,生成自由格式的文本作为输出。(2)BLIP-2引入了一个资源效率更高的框架,包括用于弥补模态差距的轻量级Q-Former,实现对冻结LLMs的充分利用。利用LLMs,BLIP-2可以使用自然语言提示进行零样本图像到文本的生成。(3)LLaVA率先将IT技术应用到MM领域。为了解决数据稀缺问题,LLaVA引入了使用ChatGPT/GPT-4创建的新型开源MM指令跟踪数据集以及MM指令跟踪基准LLaVA-Bench。(4)MiniGPT-4提出了一种简化的方法,仅训练一个线性层即可将预训练的视觉编码器与LLM对齐。这种有效的方法能够复制GPT-4所展示的功能。(5)mPLUG-Owl提出了一种新颖的MM-LLMs模块化训练框架,结合了视觉上下文。为了评估不同模型在MM任务中的表现,该框架包含一个名为OwlEval的教学评估数据集。(6)X-LLM陈等人扩展到包括音频在内的各种模式,并表现出强大的可扩展性。利用Q-Former的语言可迁移性,X-LLM成功应用于汉藏语境。(7)VideoChat开创了一种高效的以聊天为中心的MM-LLM用于视频理解对话,为该领域的未来研究制定标准,并为学术界和工业界提供协议。

十七问解读生成式人工智能

大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫?、狗?)。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
AI和知网整合的工具
目前存在能联网检索的 AI ,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验并保持用户数据私密性。这些 AI 搜索工具的出现标志着信息检索领域的重要发展,结合 AI 技术和搜索引擎大幅提升数据集命中预期,为实际应用带来更多可能性。 另外,提供以下功能:和 AI 知识库对话,可问任何关于 AI 的问题;集合精选的 AI 网站,按需求找到适合的工具;集合精选的提示词,可复制到 AI 对话网站使用;呈现知识库的精华内容。 在 Obsidian 中嵌入 AI 辅助工具,第五步是打开新面板,具体操作包括:用命令面板打开创建的页面(默认快捷键 Ctrl+P ),在弹出的搜索框中输入插件名称 custom frames ,在下拉选项中选择 OpenKimi ,打开设置好的 Kimi 窗口。Obsidian 与 AI 组合使用有几种思路,如内嵌网页+AI(Custom frame)、笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容 。其中“内嵌网页+AI(Custom frame)”的简单嵌入方法已分享,后续为您介绍 2 4 三类工具的配置方法。
2025-03-28
deepseek如何定制化打造属于自己的内容整合写手
以下是关于如何定制化打造属于自己的内容整合写手的相关信息: 新闻播报自动化工作流: 内容获取:输入新闻链接,系统自动提取核心内容。开始节点需输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片(以 1ai.net 资讯为例),利用图片链接提取节点获取新闻主图,调整图片节点将 url 格式转为 img 格式。 文字处理:使用链接读取节点提取文字内容,在提取链接后接上大模型节点,用 DeepSeek R1 模型重写新闻为口播稿子,可在提示词中加入个性化台词。需注意 DeepSeek R1 基础版限额使用,可手动接入专业版。 DeepSeek 提示词方法论: 高阶能力调用:包括文风转换矩阵(如作家风格移植、文体杂交、学术口语化等)和领域穿透技术(如行业黑话破解)。 场景化实战策略:涵盖商业决策支持、创意内容生成、技术方案论证。 效能增强技巧:如对话记忆管理(包括上下文锚定、信息回溯、焦点重置)和输出质量控制(针对过度抽象、信息过载、风格偏移等问题的修正指令)。 特殊场景解决方案:包括长文本创作(分段接力法、逻辑粘合剂)和敏感内容处理(概念脱敏法、场景移植法)。 AI 编程与炼金术:Build on Trae: 相关知识图谱包含多个章节,如 Trae 的介绍/安装/疑难杂症、图片字幕生成器、DeepSeek R1 驱动的 Life Coach、DeepSeek 驱动的网页金句卡片生成等,涉及 Node.JS 安装、Python 安装、申请 DeepSeek R1 API、网页接入 DeepSeek API 等知识点。
2025-02-25
deepseek如何整合在飞书中
DeepSeek 整合在飞书中的相关信息如下: 2 月 19 日:《DeepSeek 最新论文科普解读:NSA,物美价廉的超长上下文方案》介绍了 DeepSeek 最新论文提出的“Native Sparse Attention”(NSA),一种高效的超长上下文方案,显著提升模型性能。《输入观点一键生成文案短视频》介绍了基于 Coze 平台的视频生成工作流,通过集成 DeepSeek R1 模型等技术,用户可通过表单输入主题观点自动生成短视频并推送至飞书消息。 2 月 10 日:《最好的致敬是学习:DeepSeekR1 赏析》专为非技术人群设计,介绍了 R1 和 V3 的技术亮点等。《DeepSeek 创新源于芯片封锁,Anthropic 或成最大输家;美国不是通过创新竞争,而是通过封锁竞争》探讨了 DeepSeek 的崛起及相关情况。《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》介绍了将飞书多维表格与 DeepSeek R1 结合提升工作效率的方法。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法:2 月 14 日 8 点有直播,直播结束可看回放。学习文档有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》。模板可在复制。创建账号时普通账号需自行升级或注册专业号。创建智能体时点击创建先完成一个智能体的创建。若已创建好推理点,可在 Bot 编排里直接看到和选择创建好的推理模型。测试可用后直接发布,注意发布到公共空间时他人使用 API 会消耗 Token,可设置为仅自己使用。若想搭建联网及复杂的工作流,可看《韦恩:被困在离线孤岛?DeepSeek 联网版我已经用扣子实现了!!不卡顿!!》。
2025-02-23
目前最好用的ai整合网站
目前一些好用的 AI 整合网站包括: ChatGPT Plus:其用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 You.com 和 Neeva AI 等:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,WaytoAGI 网站也有一些特色功能,比如: 和 AI 知识库对话:您可以在这里问任何关于 AI 的问题。 AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 AI 提示词:集合了精选的提示词,您可以复制到 AI 对话网站来使用。 知识库精选:将每天知识库的精华内容呈现给大家。 另外,还有一些 AI 应用,例如: 联想设备管理平台:AI 办公设备管理系统,使用数据分析、物联网技术,管理办公设备,提高设备利用率。 新氧 APP:AI 美容护肤机构推荐平台,运用数据分析、自然语言处理技术,为用户推荐优质的美容护肤机构。 大众点评亲子频道:AI 儿童教育机构推荐平台,通过数据分析、自然语言处理,为家长推荐优质的儿童教育机构。 汽车之家车商城:AI 汽车销售平台,借助数据分析、自然语言处理,为消费者提供汽车购买渠道。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-28
目前最好用的ai整合插件
目前一些好用的 AI 整合插件如下: Coze 插件: 提供了多样化的插件库,涵盖从基础的文本处理到高级的机器学习功能,如文本分析插件可帮助理解用户输入意图,情感分析插件能识别情绪倾向,自然语言处理(NLP)插件支持复杂对话生成,还有图像识别、语音识别、数据分析等插件,其数量和种类不断增加以适应变化。 整合了符合平民生活化的插件,如新闻资讯(头条新闻)、天气预报(墨迹天气)、出行必备(飞常准、猫途鹰)、生活便利(快递查询助手、国内快递查询、食物大师、懂车帝、幸福里、猎聘)等。 Excel 相关的 AI 工具和插件: Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后自动完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,可通过自然语言交互式进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能公式生成、根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到相关软件中,提高工作效率和智能化水平。请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-28