Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

通往AG之路

Answer

“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。

它不仅是一个知识库,还是连接学习者、实践者和创新者的社区。这里为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。

平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。

其品牌 VI(视觉识别)融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。

如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。如果您不知道从哪里开始,可以进一步探索社区的相关指引。

Content generated by AI large model, please carefully verify (powered by aily)

References

知识库有什么|感谢银海 inhai

“我们都知道,探索知识善如磨刀,面对复杂多元的在人工智能(AGI)领域,如何打破条条框框,去捕捉每一丝有价值的信息和知识呢?那么我相信答案就是:通往AGI之路「WaytoAGI」,一个由开发者、学者和有志人士等等参与的学习社区和开源的AI知识库。在这里,你既是知识的消费者,也是知识的创作者。这个世界上有很多走走停停的探索者,所以,我们以"无弯路,全速前进"为目标,助力每一个怀揣AI梦想的人能疾速前行。每一份崭新的尝试都值得赞美,每一份坚毅的付出都应得到鼓励。AI知识库的生长正得益于每一个你平凡而坚持的时间,因为你们的一致肯定和支持,我们才充满信心,不断修炼,探寻AGI领域的无限可能。「通往AGI之路」不仅是一个知识库,它是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。我们在共创计划的道路上,不断收获,快速成长。对于一切,我们都满怀期待,乐观向阳。继续坚持,信息世界中你我皆是探索者。感谢您对“通往AGI之路”的持续关注!通过举办的活动和分享,我们有幸获得了一些奖项和媒体报道,这一切都离不开大家的鼎力支持。我们深感荣幸,并期待在未来的旅程中,能够持续为大家带来更多、更好的内容。

WaytoAGI 品牌 VI

社区简短介绍“通往AGI之路”(WaytoAGI)是一个致力于人工智能(AI)学习的中文知识库和社区平台,旨在为学习者提供系统全面的AI学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取AI知识,提高自身能力该平台由开发者、学者和AI爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的AI行业资讯等此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作如果您对AI学习感兴趣,加入“通往AGI之路”社区将是一个不错的选择。在这里,您可以获取最新的AI知识,参与实践活动,与志同道合的学习者共同成长。[heading2]前言:品牌视觉识别介绍[content]「通往AGI之路」的品牌VI(视觉识别)融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。颜色:我们选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。彩虹色的丰富层次和鲜明对比,象征着人工智能领域的无限可能和多维视角。图案:品牌的标志性图案是一只鹿,它在中文中与「路」谐音,象征着通往AGI未来的道路。鹿的形象优雅而智慧,寓意在追求AGI过程中的品味与睿智。字体设计:我们选择的是简洁现代的非衬线字体,这种字体风格简约而现代,易于阅读,强调了信息传达的清晰度和直接性。「通往AGI之路」是一个充满活力、敢于创新、追求科技美感的品牌。我们的VI不仅仅是视觉上的呈现,它是我们对AGI探索路上多元思维和创新追求的体现。

Others are asking
什么是AGI
AGI 即人工通用智能,通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。 例如,OpenAI 的相关计划中,Q2025(GPT8)将实现完全的 AGI,但因一些原因有所推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在关于 AGI 实现后未来 20 年人类社会的变革的研究中,AGI 的出现被视为人类历史上具有转折意义的事件。 Sam Altman 认为,呈现人工通用智能特征的系统正浮现,人工通用智能通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,它是人类进步脚手架上的另一个工具。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。AGI 的出现被视为人类历史上具有转折意义的事件,当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,包括社会结构、价值观、权力格局、人类角色等多个方面。我们的使命应是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-04-15
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
我该如何学习AGI,请给我规划一条可行的学习之路
以下是为您规划的学习 AGI 的可行之路: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 记忆方面: 先从 AI 的历史、基本术语、重要人物、方法和原理等开始了解,查看入门课程。 具体的学习资源包括: 关于 Prompt 的了解:https://ywh1bkansf.feishu.cn/wiki/Q5mXww4rriujFFkFQOzc8uIsnah?table=tbldSgFt2xNUDNAz&view=vewo2g2ktO 适合的 AI 对话:https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc 绘画相关:https://ywh1bkansf.feishu.cn/wiki/Q5ddwxfkMiVUZBkQXN7cgXf4nOb 语音相关:https://ywh1bkansf.feishu.cn/wiki/ZXPiw2OuLi2YsxkkmaLcPTyInrc AI 历史:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbl1tOC3ZKbrcHVn&view=vewTtypUZc 基本术语:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tbltvr7KExCt7Jpw&view=vewjxk9tDu 重要人物:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblLtN12KuvP5reO&view=vewuvGBXhd 方法和原理:https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=tblolGx2mprs1EQz&view=vewx5ROYtl 入门课程:https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w
2025-03-28
MCP是什么 ?通往AGI之路中有相关的学习资料吗?
MCP(模型上下文协议)是由 Anthropic 于 2024 年 11 月推出的一项创新标准。它旨在实现大语言模型与第三方数据源的无缝连接,通过支持内容存储库、业务工具和开发环境等多种外部服务,让 AI 模型获取更丰富的上下文信息,从而生成更加精准、相关的智能回答。 Lark 认为,用一句话概括,MCP 是一种通用的方式,向各类大语言模型提供数据源和工具。官网解释:MCP 是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式,可以将其想象成 AI 应用程序的 USBC 接口。 此外,还有文章介绍了如何通过 MCP 连接 Claude 3.7 与 Blender,实现一句话生成 3D 场景的功能。随着 MCP 的崛起,AI 不再是数据孤岛,未来的 AI 智能体将能自主完成更复杂的任务,开启创作的新纪元。
2025-03-25
网站“通往AGI之路”的建设意义是什么?
“通往 AGI 之路”网站具有以下建设意义: 1. 学习平台:是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 2. 资源丰富:由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 3. 实践促进:定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 4. 品牌形象:品牌 VI 融合独特设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建充满活力和前瞻性的品牌形象。 5. 连接作用:不仅是一个知识库,更是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 6. 影响力大:在没有任何推广的情况下,一年时间已有超过 70 万用户和超千万次的访问量,是很多 AI 爱好者知识的源头。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。
2025-03-24
设计一条大模型学习之路,并给出推荐资料
以下是为您设计的大模型学习之路及推荐资料: 学习之路: 1. 了解大模型的基本概念:通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU 等)、确定教材(大量的数据量)、找老师(算法讲述内容)、就业指导(微调)、搬砖(推导)。 2. 学习大模型的构建过程: 收集海量数据:如同教孩子成为博学多才的人需要让其阅读大量资料,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 预处理数据:像为孩子整理适合的资料,AI 研究人员要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、分割文本。 设计模型架构:为孩子设计学习计划一样,研究人员要设计大模型的“大脑”结构,如使用 Transformer 架构等特定的神经网络结构。 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复预测句子中的下一个词来逐渐学会理解和生成人类语言。 推荐资料: 1. 直播共学: 可在飞书知识库中查看以下分享内容和教程:小七姐、刘宇龙、熊猫、MQ、财猫、李继刚、凯翔、AJ、南瓜博士、江树的分享。 参与每晚群里的分享和讨论会,包括 3.4 直播聊天(讲讲大家最初入门学 prompt 的一些入门方法)、3.5 直播分享(小七姐提示词学习路径)、3.5 直播答疑(小七姐、宇龙、AJ 学习路径中的各类问题和 AGI 对应知识推荐)、3.6 直播分享(MQ:文科小白+普通宝妈的 AI 学习之路、熊猫提示词和思维模型)、3.7 直播分享(南瓜博士&财猫文理兼修话 PROMPT)、3.7 直播聊天解答作业等。 2. 文章学习: 大模型工具请大家自行准备,推荐顺序为:1.chat 2.kimi.ai 3.智谱清言 4
2025-03-23
大模型学习之路
大模型的学习之路包括以下几个主要方面: 1. 大模型的定义:通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 2. 大模型的训练和使用类比: 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法让大模型更好理解Token之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 Token:Token被视为模型处理和生成的文本单位,可代表单个字符、单词等,在将输入进行分词时会数字化形成词汇表。 3. 大模型的底层原理:计算机科学家/工程师以大脑神经元细胞结构为灵感,利用概览模型在计算机上实现对人脑结构的模仿,但大模型内部是混沌系统,存在不确定的“不安感”,同时也学习了人类大脑的优点和特质,这些特质在实际应用中表现出“缺陷”和“不足”。 4. 大模型的构建过程: 收集海量数据:如让孩子阅读大量书籍等,对于AI模型就是收集互联网上的各种文本数据。 预处理数据:像为孩子整理资料,AI研究人员也需清理和组织收集的数据,如删除垃圾信息等。 设计模型架构:为孩子设计学习计划,研究人员需设计AI模型的“大脑”结构,如使用Transformer架构。 训练模型:如孩子开始学习,AI模型开始“阅读”数据,通过反复预测句子中的下一个词逐渐学会理解和生成人类语言。
2025-03-23
请详细讲述一下这个网站《通往AGI之路》的学习方法?
《通往 AGI 之路》的学习方法如下: 1. 系统学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等高质量学习内容,并整理成学习笔记,在整理过程中与大家交流互动。 2. 社区共创学习:对于觉得系统学习枯燥的同学,可以等待社区共创内容,通过共创做小项目来反向推动学习。 3. 了解相关原理:学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 4. 探索应用:例如了解 Stable Diffusion 运作原理与 GPT 训练现状。 5. 针对特定软件:对于 AE 软件,可在 B 站找丰富的入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习,还可参考模板。 6. 名词解释:理解包括 AGI、AIGC、agent、prompt 等 AI 相关名词,可通过与 AI 对话或李继刚老师的课程来理解。 7. 信息获取:关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 8. 参与活动:参加如 AIPO、CONFIUI 生态大会等社区活动,每月还有切磋大会。 9. 阅读经典:阅读介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章,以及软件 2.0 时代相关内容。 10. 初学者推荐:对于初学者,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。同时,整理 open AI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-23
通往agi之路是一个怎样的团队
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 它具有以下特点: 1. 目标是助力每一个怀揣 AI 梦想的人在探索知识的道路上“无弯路,全速前进”。 2. 这里既是知识的消费者,也是知识的创作者。 3. 拥有 200 多个微信群和 140 多个高校群。 4. 举办了 AIPO 等相关活动,活动遵循先共学再以赛代练的学习路径,邀请了 10 位 AI 界大佬分享经验。 5. 有赛博禅心主理人大聪明等人员的参与和支持,赛博禅心公众号有 5000 个 AI 项目详解,可为活动提供灵感。 6. 中科院翟教授曾开场致辞。 7. 提供了 v two agi.com 网站供注册进入知识库。 同时,“通往 AGI 之路”还有众多友情链接,涉及麦橘、orange、Web3 天空之城、Ragnar 瑞哥那、海辛、三思、云中江树、陈财猫、阿文等在 AI 领域的不同角色,如产品经理、艺术家、工程师等。
2025-03-22
给我一份通往AIGC的学习目录
以下是一份通往 AIGC 的学习目录: 1. AIGC 概述 1.1 GenAI、AIGC 的基本概念 GenAI 的定义、工作原理及应用 典型的 GenAI 产品 AIGC 的定义及创建方式 国内 AIGC 的监管框架 1.2 AIGC 的分类及应用 语言文本生成的模型和代表项目 图像生成的技术和代表项目 音视频生成的方法和代表项目 AIGC 在音乐生成、游戏开发和医疗保健等领域的应用 1.3 AIGC 应用可能引发的风险 内生风险,如算法的不可解释性和不可问责性,代码开源的安全和伦理担忧 数据隐私问题,如数据泄露、匿名化不足、未经授权的数据共享 知识产权风险,如作品侵权、不当竞争 相关法律和规定对 AIGC 的要求 AIGC 滥用可能导致的问题,如虚假信息传播、侵犯隐私 2. AI 赋能教学 从易到难的学习路径 了解 AI 工作原理 尝试各种 AI 工具 学会优化提示词 生成课程资源 解决教学场景 课上师生机共学 促学生正确使用 提升人机共创力 相关主题 AIGC 教育革命:技术原理与课堂实践 AI 从工具到助手赋能教师提升效率与能力 大语言模型的教学潜力:交流技巧与心得 AI 与教育场景融合拓展教学边界与创新场景 AI 与人类智能的共生放大学生思考力塑造深度学习能力 一线教师的 AI 需求与高效工具推荐 AI 赋能课堂的核心逻辑:从理论到应用 解码 AI 教学案例:创新与实践 教学主要负担分析,如备课压力、适应新课标
2025-03-17
transformer是通往AGI的必经之路吗?什么是世界模型,当前有哪些进展
Transformer 并非通往 AGI 的必经之路。在已知的 token space 中,Transformer 符合一些条件,但在更通用的场景中不太符合。AI 本质包含一堆 scaling law,一个值得被 scale up 的架构是基础,且架构要支持不断加入更多数据。当前在数据方面,如限定问题的数据生成有进展,但通用问题还没有完全的解法。 世界模型方面,目前的研究正在以指数级别的速度增长。对于语言这种有结构、有规则的指令系统,其逻辑受指向描述变化,如早期语言模型建模中用到的 RNN、LSTM 及当前 LLM 的 Transformer 模型结构,都是对语言序列性所体现逻辑结构的适配。同时也在思考是否存在其他形式的符号化表征及相应的建模结构,以及对于非碳基生物语言的使用情况等。未来通往 AGI 的道路并非简单,需要探寻 RL 与 LLM 的本质普遍性。
2025-03-16