Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果我想让deepseek成为我专属的公文写作助手,需要输入什么提示词

Answer

如果您想让 DeepSeek 成为您专属的公文写作助手,可以参考以下提示词:

  1. 首先借助 AI 分析好的文章:
    • 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。
    • 第一次询问:请从写作角度分析这篇文章。
    • 第二次询问:请再从读者角度分析这篇文章。
    • 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。
    • 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。
  2. 让 AI 对您写的文章进行点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。”
  3. 根据文章内容对作者进行心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。”
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

推荐阅读:《介绍一种提升写作能力的方法》by和菜头我觉得和菜头的方法挺好的:首先是借助AI分析好的文章1.找出你最喜欢的文章,投喂给deepseek R1(理论上来说适合大多数AI,尤其是有推理模型);2.第一次询问:请从写作角度分析这篇文章;3.第二次询问:请再从读者角度分析这篇文章;4.第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间;5.对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。然后是让AI能对你写的文章点评:「现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有30年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。」最后还分享了一个根据文章内容对作者心理侧写的提示词:我希望你扮演一个从业20多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。1.作者的基本画像2.核心性格特质3.认知与价值观4.潜在心理动机5.行为模式推测6.矛盾与盲点7.文化符号映射输出markdown格式

详解:DeepSeek深度推理+联网搜索 目前断档第一

推荐阅读:《介绍一种提升写作能力的方法》by和菜头我觉得和菜头的方法挺好的:首先是借助AI分析好的文章1.找出你最喜欢的文章,投喂给deepseek R1(理论上来说适合大多数AI,尤其是有推理模型);2.第一次询问:请从写作角度分析这篇文章;3.第二次询问:请再从读者角度分析这篇文章;4.第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间;5.对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。然后是让AI能对你写的文章点评:「现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有30年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。」最后还分享了一个根据文章内容对作者心理侧写的提示词:我希望你扮演一个从业20多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。1.作者的基本画像2.核心性格特质3.认知与价值观4.潜在心理动机5.行为模式推测6.矛盾与盲点7.文化符号映射输出markdown格式

集合·DeepSeek 提示词方法论

第四,Deepseek这个输出结果另一个神来之笔,就是在独白文本中“自作主张”地加入了括号中的场景描述。这一操作,一下就让整个输出的画面感扑面而来,读者仿如亲历,而这完全没有在提示词中提出。(“夜风掀动案头《韩非子》,停在"夫妻者,非有骨肉之恩也"那页”)、“(墨迹在"弑"字上晕开一团)这些句子的确很难相信是AI写的。而(“忽然扔笔,抓起铜镜”)这句也隐喻了魏征的名言“以铜为镜,可以正衣襟;以史为镜,可以知兴衰;以人为镜,可以知得失”。你说这AI成精了,我都信。第五,最重要的,DeepSeek预判了用户的需求。再回顾一下我输入的提示词——“玄武门之变结束的当天,李世民在深夜写下一段独白,你觉得他会写什么?”我的输入已经非常简洁了,不能再压缩了,并且没有任何形容词,没有任何倾向性。但神奇的是,它显然知道我要什么,比如这当然不是一个要求精确的数理题,它自然想到要给输出加上文学性,这种预判在很大程度上表现出了“高级的智能”。当然,一个值得商榷的点是,根据史实,魏征是在玄武门之变之后才见到李世民

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
如何利用AI打造专属知识库
利用 AI 打造专属知识库可以通过以下步骤: 1. 拆解创作任务:将复杂的任务拆解到合适的颗粒度,为 AI 提供方法论和明确的输出格式。例如,拆解创作“科幻预见未来”的步骤,确定关键任务节点和围绕其展开的主线任务。 2. 建立定向知识库: 私人知识库中的内容一般包括日常从互联网收集的优质信息以及个人日常的思考和分享。 可以将相关内容导入到特定工具(如 flowith 的知识花园)中作为 AI 可调用的知识库。 对于导入的内容,可打开智能拆分模式,让 AI 自动分析优化拆分逻辑,形成知识“种子”。 3. 工作流中配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(适合理解语义关联度和跨语言查询场景)、全文检索(适合特定名称、专有名词等场景)、混合检索(结合前两者优势)。 最大召回数量:选择返回给大模型使用的内容片段数量,数值越大返回越多。 最小匹配度:根据设置选取要返回的内容片段,过滤低相关度结果。需多轮测试找出最优值。 此外,基于私人知识库打造个人专属的 ChatGPT 常见有两种技术方案: 1. 训练专有大模型:效果虽好,但成本高,更新难度大,并非当下主流方案。 2. 利用 RAG(检索增强生成)技术。
2025-03-31
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
如何建立一个行业的知识库,并建立这个行业的专属AI模型?
建立一个行业的知识库并建立专属 AI 模型可以参考以下步骤: 1. 明确行业需求和目标:确定知识库和 AI 模型要解决的具体问题和实现的功能。 2. 收集和整理数据:包括行业相关的各种信息、文档、案例等,为知识库提供素材。 3. 设计提示词:明确 AI 模型的角色和专注的技能,使其能够按照设定进行工作。 4. 构建知识库:将行业特定的规则、流程、案例等内容整理成工作手册,供 AI 模型参考。 5. 选择合适的 AI 模型:例如可以使用阿里千问模型等。 6. 进行模型训练和优化:根据收集的数据和设定的提示词、知识库对模型进行训练,并不断优化。 7. 融合实际场景:让人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,避免复制危险的偏见。 8. 持续评估和改进:根据实际应用效果,对知识库和 AI 模型进行评估和改进。 例如,在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力。创建专门从事医疗保健特定领域的 AI,让其接触到顶级从业人员的多样化视角。在财经领域,依托中央财经大学的资源优势,基于内容增强型知识插槽技术构建高质量知识库,与客户自有知识库结合,实现全业务场景的支撑,可实现快速的专家级 Agent 构建与管理维护。在文档处理领域,如上海普米智图智能科技有限公司,自主研发的数据框架 Ananke 和 Agent 框架 Moros,利用智能体技术提升工作流效率。
2025-03-01
如何对扣子智能体做专属训练
对扣子智能体进行专属训练时,需要注意以下要点: 1. 跳转设置:扣子在节点切换提供了独立和非独立两种识别模式。独立识别模式中每个节点都有一个独立识别模型,非独立模式则直接使用当前智能体模型进行判断,实际使用中推荐独立模式。 2. 独立模式的选择:独立模式有两种选择。第一种是面对通用指令时,选择已经训练好的、专门用于节点切换的大型模型,其优点是经过特定训练,无需额外操心设计。第二种是在遇到非常复杂的情景时,使用自定义的大型模型,可根据需求定制模型和编写特定提示词以适应复杂交互场景,但实际测试效果不理想,所以推荐使用第一种。 3. 关键注意点:在使用专门训练的意图识别模型进行节点切换时,要特别注意两个关键点。一是每个智能体的用途必须清晰明确,在设计和实现时要清楚标注其功能和目的,以确保系统能准确识别和响应用户意图。二是智能体的名称非常重要,应清晰、易于识别,便于系统识别和记忆。
2025-01-27
如何做一款专属某行业的AI
要开发一款专属某行业的 AI ,可以参考以下要点: 1. 学习模式:AI 应像人类一样学习,例如在医疗保健领域,创建具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力,可能会以与人脑皮层类似的方式发展,并针对特定任务专门设计神经架构。 2. 特定领域专家 AI:创建特定领域的专家 AI 比创建全能 AI 更容易,预计会创造许多专家 AI ,它们在编码、数据和测试方面采用多样化方法,并提供多种意见。 3. 现实世界互动:让熟练的人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,同时避免复制危险的偏见。 4. 模型生态系统:以医疗保健为例,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。成为顶尖人才通常从多年密集信息输入和正规教育开始,再通过学徒实践,AI 学习也应如此,通过堆叠模型训练,而非仅依靠大量数据。 5. 行业调研报告: 步骤:让 AI 阅读学习优秀行业调研报告,总结方法论和操作框架;询问收集行业数据时所用的一手和二手数据及靠谱资料收集网站;要求 AI 推荐行业信息网站和微信公众号,并输出行业调研报告框架;丰富框架每一章节内容。 注意事项:使报告有深度可通过自身对行业的了解整理深度洞察和见解,或深度咨询 AI 并借助其知识学习、研究和总结。 以上是关于如何做一款专属某行业的 AI 的相关内容。
2025-01-22
我想训练一个专属Agent该怎么做?
要训练一个专属 Agent,以下是一些关键步骤和要点: 1. 明确目标:确定您希望 Agent 实现的特定目标,这将为训练提供方向。 2. 理解智能体的定义:智能体是能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 3. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 4. 反思和完善:让 Agent 能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 5. 记忆管理:包括短期记忆,利用模型的短期记忆进行学习;长期记忆,通过外部向量存储和快速检索实现长时间信息保留和回忆。 6. 工具使用:训练 Agent 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 7. 评估工具使用能力:从调用 API 的能力、检索 API 的能力以及计划 API 超越检索和调用的能力这三个层面进行评估。 在训练过程中,还需要注意模型的上下文窗口长度有限,输入的剧集应足够短以构建多剧集历史,2 4 个剧集的多剧集上下文对于学习近乎最优的上下文强化学习算法是必要的,且上下文强化学习的涌现需要足够长的上下文。
2025-01-17
哪个APP或大模型写公文比较好
目前在写公文方面,以下是一些相关的信息: 大模型工具推荐:chatGPT 4.0、kimichat、智谱清言 4。 飞书文档带有文本纠错功能。 但对于专门用于写公文的 APP ,上述内容中未明确提及。
2025-03-21
AI公文写作
以下是关于 AI 公文写作的相关信息: AI 公文智能体: “学习强国公文助手”在文小言 APP 正式上线,具有文汇检索、AI 公文书写、AI 公文润色等功能。其具有权威的“学习强国”数据库背书,内容覆盖文汇、重要活动、重要会议、指示批示等。使用方式为下载文小言 APP 找寻学习强国公文助手。 AI 在工作流中的应用: 1. 拆解工作流程:做每件事之前思考 AI 能提供的帮助,如用 AI 拆解公众号写作的工作流,可通过提示词让 Claude 给出大致框架并进一步细化。建议将拆解出的工作流程用图表展示,如用 Xmind 画时间轴图。但对于画流程图,虽 AI 能帮忙但为了锻炼自己和效果考虑,不建议让 AI 画。 2. 给工作流武装上武器:先梳理传统工作流,再考虑 AI 赋能。以公众号写作为例,明确传统流程的各个环节,如选题、搜资料、列提纲、起标题、配图片、排版发布等,然后在相应环节引入 AI 工具辅助,如资料搜集可用 AI 搜索工具,写作环节可用 Claude 辅助,做图可用 AI 画图工具等。但要先理清传统工作流,否则盲目引入 AI 工具可能适得其反。AI 是为了更高效地达成业务目标服务,一切以业务逻辑为先。
2025-03-20
公文写作工具推荐
以下是为您推荐的公文写作工具: 1. 熊猫大侠中的相关工具: 辅助写作方面: 公文笔杆子:公文材料写作必备,效率开挂! 办公提效方面: 翻译通:一键中英互译,直译意译,样样精通。 Offer 收割机:改简历,练面试,接 offer。 PPT 助手:让您的 PPT 既有 Power,又有 Point。 2. 内容仿写 AI 工具: 秘塔写作猫:https://xiezuocat.com/ 写作猫是 AI 写作伴侣,帮您推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错的同时一并给出修改建议,智能分析文章的各类属性,用人工智能为您的文章正负情感、情绪强度和易读性打分。 笔灵 AI 写作:https://ibiling.cn/ 笔灵 AI 写作是得力的智能写作助手,心得体会、公文写作、演讲稿、小说、论文十八般武艺样样精通。支持一键改写/续写/扩写,智能锤炼打磨文字,使之更加符合您的需求。 腾讯 Effidit 写作:https://effidit.qq.com/ 智能创作助手 Effidit(Efficient and Intelligent Editing)是由腾讯 AI Lab 开发的一个创作助手,探索用 AI 技术提升写作者的写作效率和创作体验。 3. 论文写作相关的 AI 工具和平台: 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-07
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学?️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
我是一名高校新媒体工作人员,由于文字能力一般,需要能力较强的ai文本工具,用于撰写公文,新闻稿,公众号推文,总结简报等。请推荐至少5个,并进行对比分析
以下为您推荐至少 5 个适用于高校新媒体工作人员的 AI 文本工具,并进行对比分析: Copy.ai: 功能强大,提供丰富的新闻写作模板和功能。 可快速生成新闻标题、摘要、正文等内容,节省写作时间,提高效率。 Writesonic: 专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能。 智能算法能根据用户提供信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI: 人工智能写作助手,写作质量较高,支持多种语言。 虽主打博客和营销文案,也可用于生成新闻类内容。 Grammarly: 不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 QuillBot: AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,同时保持原意。 秘塔写作猫: 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。 支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作: 是智能写作助手,能应对多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等。 支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作: 由腾讯 AI Lab 开发,能探索用 AI 技术提升写作者的写作效率和创作体验。 选择工具时,您可根据具体需求(如文档类型、个人偏好等)进行考虑。例如,若主要需求是生成新闻类内容,Copy.ai、Writesonic 和 Jasper AI 可能更适合;若还需兼顾排版和语法检查,Grammarly 和 QuillBot 是不错的选择;若注重中文内容的改写,秘塔写作猫、笔灵 AI 写作和腾讯 Effidit 写作可优先考虑。
2025-02-26
AI在强业务规则的公文写作场景可以如何应用?
在强业务规则的公文写作场景中,AI 可以通过以下方式应用: 1. 先梳理传统公文写作工作流,包括选题、搜资料、列提纲、起标题、配图片、排版发布等环节。 2. 在资料搜集环节,可以使用 AI 搜索工具辅助,提高搜集效率和准确性。 3. 在写作环节,可引入如 Claude 等工具辅助创作。 4. 对于公文润色,AI 能够在保留文章结构和准确性的基础上,提升公文质量。 5. 例如“学习强国公文助手”,可以帮助用户进行文汇检索、AI 公文书写等。 需要注意的是,在引入 AI 之前要先理清传统工作流,明确每个环节的因果逻辑和输入输出关系,以业务逻辑为先,让 AI 为更高效地达成业务目标服务。
2025-02-19
我想要一个助手,能帮助我快速计算式子
如果您想要一个能帮助快速计算式子的助手,可以通过以下步骤实现: 1. 搭建示例网站: 创建应用:点击打开提供的函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相应位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果,此时网站的右下角会出现 AI 助手图标,点击即可唤起 AI 助手。 此外,零代码自建决策助手可以帮您解决生活中的决策问题,决策链设计包括: 1. 加权得分计算:将每个选项在各个标准上的得分与相应的权重相乘,然后求和,得出每个选项的总加权得分。 2. 机会成本分析:考虑选择每个选项时可能放弃的其他机会。 3. 简单情景分析:为每个选项构想最佳和最坏的情况。 4. 决策矩阵分析:将前面步骤的分析结果汇总到一个表格中,包括预期收益、机会成本、净收益、长期影响和风险评估。 决策阶段包括: 1. 敏感性分析:通过调整不同因素的权重,检验决策是否稳健。 2. 情感检验:反思个人对每个选项的情感反应,并考虑其与理性分析的一致性。 3. 提供最终决策建议:基于前面的所有分析,提出一个综合的建议。 案例——帮你选工作: 假设您是一名在职的产品经理,想跳槽并拿到两个不错的 offer,向决策助手求助。整个流程始于您向决策助手提出问题,决策助手随即要求您提供 offer 的基本信息。在您提供完信息后,决策助手开始定义基本的评估标准,并让您审核,还会根据您的喜好和目标给出权重分配的建议。在您认可权重分配后,决策助手对每个选项进行评分,评分采用 1 到 10 分的制度,涵盖所有评估标准。评分完成后,决策助手会整理出一个清晰的表格,包含各项评估标准的权重以及每个选项在各个标准下的得分。
2025-04-12
问题定义优化助手
以下是关于问题定义优化助手的相关内容: 市面上有很多 Prompt 框架,框架可理解为从不同角度为思考问题提供解决方案的路径。一个问题的解决通常包括问题背景(所需角色、具备的能力和资源)、问题目标(期望的输出结果和验收标准,如提供商务谈判的完整过程)、提供的资料信息、限制条件(如预算限制等)、角色技能(为目标服务所需调动的技能,如熟悉某个领域的商业案例)和工作流(解决问题时需完成的任务步骤,如信息收集、谈判策略设定等)。细致的内容可能得到更好的结果,但也可能限制可能性,这是一个平衡和折中的结果。 效果呈现方面,体验地址为 。 3 月 5 日作业要求大家看完小七姐的 5 篇入门指南并动手实践,写出自己的一条 prompt 及对话分享出来,提交格式为创作思路和目标|prompt 展示|输出结果。例如无上的目标是让大模型对自己的提问内容进行优化,其思路包括询问大模型“更好的提问”方法论、让 kimi 分析并优化等步骤。 在从 AI 助教到智慧学伴的应用探索中,提到了在不同学段和学科的应用场景,以及向 AI 大模型提问的问题设计,还涉及教育提示词优化助手。
2025-04-11
有哪些论文阅读助手相关的预置提示词
以下是一些论文阅读助手相关的预置提示词: 论文内容总结方面:GLM4Plus 结合良好的提示词能够帮助学生快速总结论文内容,提高梳理效率。例如:阅读完整篇文章之后需要花费大量时间总结和梳理文章内容,而大模型可以结合有效的提示词,迅速总结概括文档,从而节省时间。 论文内容翻译方面:GLM 结合良好的提示词能够帮助学生快速翻译论文内容,提高论文阅读效率。 论文内容扩写润色方面:精心设计的润色提示词可以根据特定场景进行调整,以便生成与特定平台风格相匹配的多样化润色结果。比如针对小红书的使用场景,调整提示词以匹配其特有的口语化、轻松愉快的氛围,从而将论文中的结论部分润色成适合在小红书上分享的生活化内容。 此外,还有以下相关提示词: Claude2 中文精读方面:零提示生成直接引用,如提示以获取相关引语。文档摘要或文本+直接引语通常能使答案更准确。 小七姐的教程中提到:比如让 AI 帮阅读文档时,可以写如“于是这个提示词解决了你自己,和任何收到你 Prompt 的人微调几个关键信息就能自动让 GPT 或者 Kimi 帮你阅读一篇论文而且生成不错的总结啦!”的提示词。还可以选择如“情境:”这样的基础提示词框架入手。
2025-04-08
作为财务人员,可以开发什么样的AI助手
作为财务人员,可以开发以下类型的 AI 助手: 1. 税务方面: 利用引刀 AP 创建网页实现智能解答税务问题。 结合飞书避免信息泄露和实现自动回复。 2. 日常工作方面: RPA 流程自动化机器人,可替代电脑办公中的重复有逻辑工作,如开票、网银流水下载等,为企业降本增效。 财经数据分析助手,能分析和解释财经数据,提供投资建议。 风险评估模型,进行财务风险评估和预测。 自动化金融报告编制,自动化编制和解读财务报告。
2025-04-01
个人AI助手可以有什么方向的应用
个人 AI 助手的应用方向广泛,包括但不限于以下几个方面: 1. 教育培训: 数字教师:如让牛顿亲自授课《牛顿运动定律》,让白居易讲述《长恨歌》背后的故事。可以与历史人物对话交流,不受时空限制,实现一对一辅导,提高学生参与感,还能根据学生情况提供定制化学习计划和资源,缓解教育资源不平等问题。 数字陪伴:作为孩子的玩伴,给予赞美等社会奖励,促进儿童成长和提高学习成绩。 2. 宠物相关: AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,如会自主移动并引起宠物注意、会发声和互动的玩具等。 AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 3. 信息检索与分析: Google Gemini 的 Deep Research:智能信息检索与分析工具,基于主题快速检索全网资源并生成综合报告,支持导出为 Google Docs 文档格式,适合学术研究、内容创作、行业分析等场景,整合了 Google 核心数据源,结合模型多模态处理能力,可处理大量上下文信息。 第四范式发布的桌面端 AI 搜索工具:基于人工智能技术的全能搜索助手,提升用户在本地文件、即时通信、网盘等各类在线应用中的搜索体验,可通过简单描述查询意图进行模糊搜索,支持实时预览搜索结果。
2025-04-01
coze小红书爆款文章生成助手
以下是关于 Coze 小红书爆款文章生成助手的相关内容: 1. 画小二的 Coze 工作流配置:包括抖音热门视频转小红书图文的详细参数配置,如整体结构图、开始模块、Get_Video 模块、LinkReaderPlugin 模块、标题大模型、内容大模型、图片 Prompt 大模型、文生图 ImageToolPro 以及输出结果的参数配置。在标题和正文生成方面,有具体的要求和技能,如采用二极管标题法、使用爆款关键词、遵循小红书平台标题特性、保证正文口语化且长短在 200 字左右等。 2. 一泽 Eze 提出的样例驱动的渐进式引导法:强调精彩的 Prompt 对驱动 AI Agent 稳定运作的重要性,指出高质量 Prompt 依赖用户的逻辑思考和知识经验抽象表达,介绍了通过 12 个初始样例引导 AI 定制完美提示词的方法。 3. 雪梅 May 的 AI 学习日记:记录了对 Coze 的学习过程,包括了解到 Coze 是字节跳动的 AI agent 产品,可用工作流方式制作 AI 智能体,如爸妈防骗助手、热点文章生成器等,并分享了自己对 Coze 的初步理解,认为它能让无技术背景的人实现想法。
2025-03-24