Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你作为AI开源项目的专家,请解释下如何来做一个AI开源项目

Answer

要做一个 AI 开源项目,以下是一些关键步骤和要点:

  1. 明确项目目标和范围:确定您的 AI 开源项目要解决的具体问题和应用场景,以及项目的边界和功能。

  2. 制定.cursorrules:

    • 说明自己的身份和期望的技能:告诉 AI 您希望它具备的专业水准和技能。
    • 明确项目任务:清晰地告知 AI 项目的具体目标和要求。
    • 设定项目规则:包括代码规范、风格等,以保证代码的一致性和可维护性。
    • 规划文件存放位置:便于代码的组织和查找。
    • 指定使用的工具:如框架和库,确保项目的整洁和统一。
    • 说明测试要求:让 AI 生成的代码具有可测试性,并主动编写测试用例。
    • 提供参考资料:帮助 AI 基于最佳实践进行开发。
    • 如有 UI 需求,明确相关要求。
  3. 选择合适的技术和框架:例如 Fooocus 这样的图像生成开源项目,它内置多种风格,适合小白上手,且具有离线、开源、免费等特点,支持在多种操作系统上使用,并借鉴了稳定扩散和 Midjourney 的设计思想。

  4. 考虑开源的角色和影响:从长远来看,开源模型的情况会变得复杂。对于具有高度能力的模型,如能够自主创办和建立大型科技公司或进行科学研究的模型,其是否开源会产生难以预测的后果。

总之,创建一个 AI 开源项目需要综合考虑多方面的因素,包括技术选型、规则制定、目标明确等,以确保项目的成功和可持续发展。

Content generated by AI large model, please carefully verify (powered by aily)

References

怎么让 AI 写出你想要的代码?.cursorrules 一招制胜

记得我刚开始写.cursorrules时,完全不知道该写什么。经过一段时间的摸索,发现其实就是把项目中影响AI输出方向的"规矩"写下来。上面截图是一张相对全面的.cursorrules写法。我们也可以按照自己的项目需求来优化里面的内容和结构。来看看几个关键部分:一)先说清楚你是谁这就像你找了个技术大牛来帮你,先告诉他"你期待他是什么样的人,拥有什么专业技能"。这样AI就会按照专家的水准来思考和coding。案例:二)告诉AI你要干什么这相当于项目启动前的需求对齐。你告诉AI:"我们这个项目要做成什么样"。AI就会始终围绕这些目标来写代码。案例:三)定好项目的"规矩"这是在强调团队的代码规范。统一的代码风格不仅看着舒服,维护起来也更容易。AI会严格按照这些规范来写代码。案例:四)明确文件放哪就像整理房间要分区一样,代码也需要规划好"位置"。这样AI生成的代码就不会乱放,后期找起来也方便。案例:五)指定用什么"工具"提前说好用什么框架和库,AI就不会随便引入其他依赖,保证项目的整洁和统一。案例:六)告诉AI怎么做测试这就像做菜要试味道一样,写代码也要测试。提前告诉AI测试的标准,它生成的代码就会考虑到可测试性,也会主动帮你写测试用例。案例:七)推荐参考资料这相当于给AI一个"学习资料",它会基于这些最佳实践来写代码,避免一些常见的坑。案例:八)UI的要求是什么最开始的案例中不涉及到任何页面的开发。如果咱们的项目需要画页面,可以补充下UI的要求。案例:

AJ:信息收集

|多行文本|标签|备注|附件|其他|附件2||-|-|-|-|-|-||Fooocus|图像生成|Controlnet作者的开源项目Fooocus,可以关注下,内置了挺多风格,小白上手快<br>Fooocus是一个图像生成软件,它通过用户提供的提示(prompts)来生成图像。用户只需要关注提示和图像,不需要进行手动调整或设置复杂的技术参数。Fooocus的目标是通过人与计算机之间的交互,探索新的思维媒介,扩展人类的想象力。<br><br>使用Fooocus,您可以通过简单的鼠标点击生成图像,无需手动调整。它还包含了许多针对高级用户的特殊功能,以获得更完美的结果。<br><br>Fooocus是离线的、开源的和免费的软件,您可以在Windows、Linux和Mac上使用它。它使用了稳定扩散(Stable Diffusion)和Midjourney的设计思想,并进行了优化和改进。<br><br>总之,Fooocus是一个方便用户生成图像的工具,它简化了操作过程,让用户能够专注于提示和图像的创作|[https://github.com/lllyasviel/Fooocus](https://github.com/lllyasviel/Fooocus)|视频介绍:[https://www.youtube.com/watch?v=ObGUQum1Ec8&ab_channel=%E6%95%B0%E5%AD%97%E9%BB%91%E9%AD%94%E6%B3%95](https://www.youtube.com/watch?v=ObGUQum1Ec8&ab_channel=%E6%95%B0%E5%AD%97%E9%BB%91%E9%AD%94%E6%B3%95)||

访谈:Ilya | 2023年11月长篇访谈

主持人:你认为开源在这个生态系统中扮演什么角色?Ilya:开源是一个复杂的问题。我将向你描述我的思考过程。我认为在短期内,开源只是帮助公司生产有用的产品……让我们来看看。为什么人们想要开源,选择使用开源模型而不是由其他公司托管的闭源模型?我认为,想要成为你希望使用模型的方式的最终决策者,并决定你希望如何使用模型以及哪种用例,这是非常有效的你希望支持的。我认为对开源模型的需求将会很大。我认为会有相当多的公司会使用它们。我想短期内也会出现这种情况。我想说,从长远来看,我认为开源模型的情况会变得更加复杂。我不确定正确的答案是什么。现在看来,有点难以想象。所以我们需要戴上未来的帽子,也许是未来主义的帽子。当你记得我们正在与计算机交谈并且它们理解我们时,进入科幻模式并不难。但到目前为止,这些计算机、这些模型实际上还不是很能干。他们根本无法完成任务。我确实认为有一天模型的能力水平将会非常高。就像归根结底,智慧就是力量。目前,这些模型的主要影响,我想说,至少流行的影响主要是围绕娱乐和简单的问题。所以你和Model谈论这件事真是太酷了。你产生一些图像。你们进行了交谈。也许您有一些可以回答的问题。但这与完成一些大型而复杂的任务有很大不同。如果你有一个可以自主创办和建立一家大型科技公司的模型呢?我认为如果这些模型是开源的,它们将产生难以预测的后果。就像我们现在离这些模型还很远一样。到目前为止,我的意思是眼睛时间尺度,但这仍然不是你所说的。但总有一天,你会拥有可以自主进行科学研究的模型,比如构建、交付大型科学项目。至于这种能力的模型是否应该开源就变得更加复杂。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
自动生成提示词的开源工具有哪些
以下是一些自动生成提示词的开源工具: 1. Freepik 推出的 Reimagine AI 工具:用户上传图片即可自动生成提示词,无需输入文字。它还能实时提供无限滚动结果展示,边操作边生成图像,通过调整提示词实时修改图片细节,并支持多种风格切换。相关链接:https://freepik.com/pikaso/reimagine 、https://x.com/imxiaohu/status/1770437135738581414?s=20 2. StreamMultiDiffusion 项目:使用区域文本提示实时生成图像,具有交互式操作体验,每个提示控制一个区域,实现精准图像生成。相关链接:https://arxiv.org/abs/2403.09055 、https://github.com/ironjr/StreamMultiDiffusion?tab=readmeovfile 、https://huggingface.co/spaces/ironjr/SemanticPalette 、https://x.com/imxiaohu/status/1770371036967850439?s=20 3. 【SD】自动写提示词脚本 One Button Prompt:可以在主菜单输入人物提示词,在“高级”中设置提示词混合,还具有一键运行放大的模块,包括完整的文生图放大和图生图放大,甚至可接入其他脚本和 controlnet。获取方式:添加公众号【白马与少年】,回复【SD】。
2025-04-12
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
开源AI Agent软件有哪些
以下是一些开源的 AI Agent 软件: 1. AutoGPT 和 BabyAGI:在去年 GPT4 刚发布时风靡全球科技圈,给出了让 LLM 自己做自动化多步骤推理的解题思路。 2. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富的插件工具。 3. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 4. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 5. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 6. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 7. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,智谱·AI 开源的语言模型中也有与 Agent 相关的,如 AgentLM7B、AgentLM13B、AgentLM70B 等。
2025-03-29
mcp 有什么开源的方案吗
Anthropic 于 2024 年 11 月推出并开源了 MCP(模型上下文协议)。MCP 就像一个“转接头”或“通用插座”,能统一不同的外部服务,如 Google Drive、GitHub、Slack、本地文件系统等,通过标准化接口与大语言模型对接。开发者基于 MCP 规范开发一次“接口适配器”(MCP 服务器),就能让所有兼容 MCP 的模型(MCP 客户端)无缝接入,无需针对每个模型单独适配,大幅提升兼容性与开发效率。MCP 里面还包含 SSE(ServerSent Events),是一种允许服务器向浏览器推送实时更新的技术。MCP 像为 AI 模型量身定制的“USBC 接口”,可以标准化地连接 AI 系统与各类外部工具和数据源。与传统 API 相比,MCP 是单一协议,只要一次整合就能连接多个服务;具有动态发现功能,AI 模型能自动识别并使用可用的工具;支持双向通信,模型不仅能查询数据,还能主动触发操作。相关链接:
2025-03-27
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
项目申报书提示词
以下是关于项目申报书提示词的相关信息: 方案扩写助手: 作为乙方,经常需要为客户写方案申报材料的文档并达到字数要求,“水文字”很痛苦。 方案扩写助手在扩写方案提示词方面做了效果提升,不抑制模型表达,编写的方案“生产端能作为素材直接用”,而非充满“AI 味”和不理解业务。 产品提示词修改了 20 多次,并在日常工作中持续迭代,最终用简短、有效、清晰的提示词实现了目前扩写方案的最佳效果(因模型不同效果有差异,可换模型尝试)。 SD 新手入门图文教程中的提示词相关资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 星流一站式 AI 设计工具中的提示词: 在 prompt 输入框中可输入提示词,使用图生图功能辅助创作。 什么是提示词:用于描绘画面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 如何写好提示词: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:可在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:翻译功能可一键将提示词翻译成英文;删除所有提示词可清空提示词框;会员加速能加速图像生图速度,提升效率。
2025-03-31
AI做副业项目
以下为您介绍一些利用 AI 做副业的项目: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记会有人咨询。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图+特定描述词,整个流程不超 10 分钟出图。 变现方式:受众群体多为宝妈,变现方式多且单价不低。在抖音、快手、视频号、小红书上发布相关视频或图文,将客户引到私域接单变现,但平台引流要注意隐蔽,以免被检测限流或封号。 2. 自媒体人通过 AIGC 做流量与变现 流量变现渠道包括直播带货、橱窗带货(抖音需 1000 粉丝、托管橱窗)、商单、介绍粉丝接项目、多种设计(如 AI 绘图十二生肖、化妆品公司产品设计、产品包装设计、海报设计、游戏背景设计、儿童绘本、AI 漫画、PFP 头像设计、AI 图片+视频:徐悲鸿教育系列 AI 内容、AIGC+地方文旅、数字人相关、汽车宣传片、喜马拉雅微短剧等)、广告(平台如抖音星图、B 站花火,也有私单,视频广告价格可自定义设置)。
2025-03-27
生成一个建筑项目管理系统
很抱歉,目前没有关于生成建筑项目管理系统的具体内容。但一般来说,生成一个建筑项目管理系统需要以下步骤: 1. 需求分析:明确系统的功能需求,例如项目规划、进度跟踪、资源管理、成本控制、质量管理等。 2. 技术选型:根据需求选择合适的技术框架和开发工具。 3. 数据库设计:构建能够存储项目相关数据的数据库结构。 4. 功能模块开发:逐步实现各个功能模块,如项目创建、任务分配、进度更新等。 5. 界面设计:设计简洁、易用的用户界面,方便用户操作。 6. 测试与优化:对系统进行全面测试,修复漏洞和优化性能。 7. 部署与维护:将系统部署到生产环境,并持续进行维护和改进。 由于缺乏具体的细节和要求,以上只是一个大致的框架,实际的生成过程会更加复杂和具体。
2025-03-23
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
有什么使用AI驱动的游戏项目吗?其中有哪些比较热门
以下是一些使用 AI 驱动的游戏项目及热门情况: 1. 《Among Us》:由只有 5 名员工的工作室 Innersloth 制作。 2. 《微软模拟飞行》:有新的游戏类型和与新内容实时生成结合的特点。 3. 《AI Dungeon》和《Hidden Door》:基于文本的早期游戏例子。 4. 《Suck Up!》:2023 年 12 月由 Proxima 工作室开发的“喜剧欺骗游戏”,玩家扮演吸血鬼与 LLM 驱动的 NPC 对话,上线仅两周全网播放火速突破千万。 此外,还有以下趋势和特点: 1. 由人工智能辅助的“微型游戏工作室”逐步崛起,小型工作室能创造的游戏规模将增长。 2. 每年发布的游戏数量会增加。 3. 新的游戏类型将会被创造出来,例如以人工智能创造的角色为特色的 Spellbrush 的 RPG 游戏 Arrowmancer。 4. 有的游戏开发商使用人工智能让玩家在游戏中创建自己的头像。 生成式 AI 将使生产高质量游戏变得更加简单、更快和更便宜,同时使玩家能够真正定制他们的游戏体验。我们已经看到像 Scenario、Iliad 这样可以创建游戏资源的 AI 工具,以及像 Promethean 这样可以构建整个虚拟世界的平台。甚至可以用像 Inworld、Charisma 和 Convai 这样的产品生成非玩家角色(NPC)。
2025-03-18
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
AI名词解释
以下是一些常见的 AI 名词解释: Compute:用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN:卷积神经网络,一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。此类模型通常用于图像识别任务。 Data Augmentation:通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent:机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning:一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems:人工智能技术的应用,为特定领域的复杂问题提供解决方案。 Agents:智能体,一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像 ChatGPT 这样的工具中“通常”的使用方式不同。在 ChatGPT 中,你提出一个问题并获得一个答案作为回应。而 Agent 拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。 ASI:人工超级智能,尽管存在争议,但 ASI 通常被定义为超越人类思维能力的人工智能。 Attention:在神经网络的上下文中,注意力机制有助于模型在生成输出时专注于输入的相关部分。 Bias:AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot:一种计算机程序,旨在通过文本或语音交互模拟人类对话。聊天机器人通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP:对比语言图像预训练,由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 TPU:张量处理单元,谷歌开发的一种微处理器,专门用于加速机器学习工作负载。 Training Data:用于训练机器学习模型的数据集。 Transfer Learning:机器学习中的一种方法,其中对新问题使用预先训练的模型。 Validation Data:机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。它用于调整模型的超参数(即架构,而不是权重)。 Knowledge Distillation:数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。数据蒸馏技术在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。它可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。 RAG:检索增强生成。
2025-04-18
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
最值得了解的AI专业名称,及解释
以下是一些值得了解的 AI 专业名称及解释: 1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 3. 机器学习:一种手段,让机器自动从资料中找到公式。 4. 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 7. AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 这些概念之间存在一定的关系,AIGC 技术可以用于多种应用,ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。对于新手学习 AI,建议先了解 AI 基本概念,如阅读相关的入门文章和熟悉术语。可以在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。实践和尝试很关键,可使用各种产品做出作品,并体验如 ChatGPT 等 AI 产品。
2025-03-11
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10