ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。
简介: 可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。
优劣势: 优势:
官方链接: 从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI
安装部署:
生图原理: ComfyUI 是一个开源的图形用户界面,用于生成 AI 图像,主要基于 Stable Diffusion 等扩散模型。
ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[content][heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。
今天主要介绍StableDiffusion的另一种UIComfyUI的实际操作方法,完全从0开始安装。以及如何在ComfyUI中使用SDXL模型,希望通过本文能够降低大家对StableDiffusion ComfyUI的学习成本,更快速的体验到AIGC图像生成的魅力。[heading1]一、电脑硬件要求[content]1.系统:Windows7以上(就不要为难XP老师傅了)。2.显卡要求:NVDIA独立显卡且显存至少4G起步。3.硬盘留有足够的空间,最低100G起步(包括模型)。4.注:mac系统,AMD显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。5.下载并更新Nvidia显卡驱动下载地址https://www.nvidia.cn/ geforce/drivers/[heading1]二、下载并安装所需要环境[content]依次下载并安装python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。1.安装Python https://www.python.org/downloads/release/python-3119/file:python-3.11.9-amd64.exe安装的时候选中“将Python添加到系统变量”1.安装VSCode https://code.visualstudio.com/Downloadfile:VSCodeUserSetup-x64-1.90.0.exe3、安装Git https://git-scm.com/download/winfile:3-Git-2.39.2-64-bit.exe4、安装CUDAhttps://developer.nvidia.com/cuda-12-2-0-download-archive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_networkfile:cuda_12.2.0_536.25_windows.exe
ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。想要达到精准控制图像生成就要了解他的底层原理,这样才能做到什么时间什么节点用什么办法对其精准控制,以下是其工作原理的详细解释:[heading3]Pixel Space和Latent Space[content]Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。Latent Space(潜在空间):ComfyUI中的应用:ComfyUI的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。[heading3]2.扩散过程(Diffusion Process)[content]噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在ComfyUI中,这通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过ComfyUI中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数TTT:在生成图像时,扩散模型会进行多个去噪步。图中展示的zTz_TzT代表不同时间步长下的潜在表示。在ComfyUI中,你可以通过控制步数来影响图像生成的精细度和质量。