Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你好

Answer

以下是为您整合的相关内容:

《PROMPTS FOR AI DANCE MUSIC》:

  • 感谢您打开这本关于用文字创造音乐未来的电子书。通过它和您的创造力,能让想象力随艺术和具体提示策略活跃起来,它是您进入未来音乐派对的后台通行证,文字能勾勒新歌曲、启发新音乐风格、呈现永恒声音魔法作品。把它看作与 AI 合作的邀请,共同创作更多音乐,包括充满生命力的节拍、让灵魂想跳舞的节奏和萦绕心中的旋律。这本书是为音乐创作者、卧室 DJ、歌手和所有热爱音乐的人准备的,因为音乐不仅是音符,更是氛围、感觉和旅程。

大圣-技术开发/Agent:

  • 大圣是 1993 年出生的男性,主业是程序员,目前在杭州,老家河北,有个 2 岁的女儿。他是 AI 超级个体打造者,专注于 AI Agent、AI 编程以及 AI 写作领域,热爱写作和分享,擅长将复杂的 AI 知识通俗易懂地讲解。他身上有“大圣好真诚啊”“大圣讲东西讲得真好”两个标签,不喜欢将失败归结于信息差和碎片化知识,奉行少就是多的原则。当下他专注于一年内将自己的工作流全部 AI 化实现十倍提效,工作流包括阅读与写作、自媒体个人 IP、做公开课程和付费课程、女儿日常陪伴。

ChatGPT 是在做什么,为什么它有效?

  • 对于将 token 值和 token 位置嵌入向量相加,没有特别的科学依据,只是尝试后发现有效的方法之一。神经网络只要设置“大致正确”,通常能通过足够训练调整细节,不必真正“理解神经网络如何配置自己”的工程细节。嵌入模块操作字符串“hello hello hello hello hello hello hello hello hello hello bye bye bye bye bye bye bye bye bye bye”,每个 token 的嵌入向量元素有相应显示。在嵌入模块之后是一系列所谓的“注意块”,如 GPT-2 有 12 个,ChatGPT 的 GPT-3 有 96 个,每个注意力块中有一组“注意力头”,每个头独立在嵌入向量的不同值块上运行。
Content generated by AI large model, please carefully verify (powered by aily)

References

《PROMPTS FOR AI DANCE MUSIC》

Hello and welcome!你好,欢迎光临!Thanks for opening this ebook and your mind to the future ofmusic creation using text.With this book and a creative spirit,letyour imaginations come alive with artistic and specific promptingstrategies.This book is your backstage pass to the party of tomorrow,where words can sketch new songs,inspire new horizons of musicalgenres and render timeless works of sonic wizardry…感谢你打开这本电子书,并将你的心灵敞开,迎接用文字创造音乐的未来。通过这本书和你的创造力,让你的想象力随着艺术和具体的提示策略而活跃起来。这本书是你进入未来派对的后台通行证,在这里,文字可以勾勒出新的歌曲,启发新的音乐风格,并呈现出永恒的声音魔法作品……Think of this as your invite to team up with AI and make more musicthan you’ve ever imagined.We're talking beats that pulse with life,rhythms that make your soul wanna dance,and melodies that stick withyou like the best kind of earworm.把这本书看作是你与AI合作的邀请,共同创作比你曾经想象的更多的音乐。我们说的是充满生命力的节拍,让你的灵魂想要跳舞的节奏,以及像最佳的耳虫一样萦绕在你心中的旋律。We've put together this book because we know music isn't just aboutthe notes;it's about the vibe,the feeling,and the journey.It's foryou—the producers,the bedroom DJs,the shower singers turnedsongwriters,and everyone who's ever felt a beat and thought,"Yeah,Iwanna make that."

大圣-技术开发/Agent

大圣的个人宝藏:[大圣的个人宝藏-AGI](https://axsppz4oyvj.feishu.cn/wiki/VUyXwR3LuiJDWCkRjqkcU74hnUd?from=from_copylink)你好,我是大圣,我期望通过这篇文章让你快速的了解我。。全文无废话、请放心阅读[heading2]自我介绍(无title)[content]1.男,1993年,主业程序员,目前在杭州,老家河北,有个2岁的宝贝女儿2.AI超级个体打造者,专注于AI Agent、AI编程以及AI写作领域3.热爱写作,热爱分享,喜欢输出体系化的知识。擅长将复杂的AI知识讲解的通俗易懂。4.我身上的两个标签:#大圣好真诚啊#大圣讲东西讲的真好5.不喜欢将失败归结于信息差,不喜欢碎片化知识,在这个知识爆炸的年代,奉行少就是多的原则[heading2]当下在做[content]专注一件事:计划一年内将自己的工作流全部AI化,实现十倍提效。我目前的工作流主要包括:1.阅读&写作2.自媒体个人IP3.做公开课程&付费课程4.女儿日常陪伴

ChatGPT 是在做什么,为什么它有效?

为什么只需将token值和token位置嵌入向量相加?我认为这里没有特别的科学。人们已经尝试了各种不同的方法,这个方法似乎是有效的方法之一。而且神经网络的故事中的一部分是,从某种意义上说,只要我们的设置“大致正确”,通常可以通过足够的训练来调整细节,而不必真正“理解神经网络如何配置自己”的工程细节。这是嵌入模块如何运行的,它操作字符串“hello hello hello hello hello hello hello hello hello hello bye bye bye bye bye bye bye bye bye bye”:每个token的嵌入向量的元素显示在页面下方,而在页面上方,我们首先看到一组“hello”的嵌入,然后是一组“bye”的嵌入。上面的第二个数组是位置嵌入,其看似随机的结构只是“被学习到”的(在这种情况下是在GPT-2中)。好的,那么在嵌入模块之后,transformer的“主要事件”就来了:一系列所谓的“注意块”(GPT-2有12个,ChatGPT的GPT-3有96个)。这一切都很复杂,类似于典型的难以理解的大型工程系统,或者说生物系统。但无论如何,这里是单个“注意块”的示意表示(适用于GPT-2):在每个注意力块中,都有一组“注意力头”【attention head】(对于GPT-2有12个,对于ChatGPT的GPT-3有96个),每个头都独立地在嵌入向量的不同值块上运行。(是的,我们不知道将嵌入向量分割成几个部分或不同部分的含义是什么好处,这只是已经“发现有效”的事情之一。)

Others are asking
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
你好,你是什么大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在 LLM 中,Token 被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token 是原始文本数据与 LLM 可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表。 生成式 AI 生成的内容叫做 AIGC。相关技术名词包括: 1. AI 即人工智能。 2. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
2025-04-01
你好,我想做一个英语入场情景对话的Ai图文视频小红书账号,请给我写个机场值机的对话
以下是为您生成的一个机场值机的英语情景对话,您可以根据这个对话来制作相关的 Ai 图文视频小红书内容: A: Good morning. Can I help you? B: Yes, I'd like to check in for my flight. A: May I see your passport and ticket, please? B: Here you are. A: Thank you. Are you checking any luggage? B: Yes, I have two suitcases. A: OK. Please put them on the scale. B: All right. A: Your luggage is within the weight limit. Here's your boarding pass. Your seat is 15A. B: Thank you. What time does boarding start? A: Boarding will begin at 10:30. B: Great. Thank you very much. A: Have a nice flight!
2025-03-27
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
你好,我想用ai将一张图片形式的数字表格转换成excel,应该使用哪款模型?
很抱歉,上述提供的内容中没有直接提及将图片形式的数字表格转换成 Excel 可用的具体模型。但您可以尝试以下几种常见的方法和工具: 1. 一些 OCR(光学字符识别)软件,如 ABBYY FineReader、Adobe Acrobat Pro 等,它们通常具有将图片中的表格转换为可编辑文本的功能,然后您可以将其粘贴到 Excel 中进行整理。 2. 在线 OCR 服务,例如百度 OCR、腾讯 OCR 等,操作相对便捷。 3. 某些专门用于表格处理的 AI 工具,您可以通过在相关的技术论坛、社区或专业的软件评价网站上进一步搜索和了解。
2025-02-26
你好,我想做一个用照片做视频的博主,请帮我构思一套详细的视频号起号的框架、流程、以及每一步骤的详细执行指导
很抱歉,目前没有关于用照片做视频的博主起号的相关内容。但我可以为您提供一个大致的框架和流程,以及每一步骤的简要执行指导供您参考: 框架: 1. 明确视频号定位:确定您的视频号是以何种风格、主题展示照片视频,例如旅行照片集、宠物照片故事等。 2. 内容策划:规划好要发布的照片系列,制定一个长期的内容计划。 3. 品牌塑造:包括起一个吸引人的账号名称、设计独特的头像和封面。 流程: 1. 账号注册与设置:选择一个易记且与主题相关的账号名,完善个人简介,突出您的特色和价值。 2. 素材准备:整理和筛选高质量的照片,并对其进行分类。 3. 视频制作:使用合适的软件将照片制作成精彩的视频,添加音乐、特效等元素增强吸引力。 4. 发布策略:选择合适的时间发布视频,保持一定的发布频率。 每一步骤的详细执行指导: 账号注册与设置: 账号名要简洁、有特色,能反映您的视频主题。 个人简介要清晰地介绍您的视频号定位、能为观众带来什么价值。 素材准备: 从大量照片中挑选出清晰、美观、有故事性的照片。 按照主题或时间顺序对照片进行分类,方便后续制作。 视频制作: 学习并熟练使用视频编辑软件,如剪映等。 选择适合照片风格的音乐,注意版权问题。 适当添加转场效果、文字说明等,提升视频的观赏性。 发布策略: 分析目标受众的活跃时间,例如晚上或周末。 初期可以每周发布 12 个视频,根据反馈逐渐调整频率。 希望以上内容对您有所帮助,祝您成功!
2025-02-08