Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

mpc相关材料

Answer

以下是关于 MPC 的相关材料:

  • Claude 直接连接到 GitHub、创建新存储库并通过简单的 MCP 集成创建 PR。Anthropic 推出模型上下文协议(MCP),Claude Desktop 现在可以直接连接到 GitHub、创建新的存储库并创建 PR。
  • 具身智能算法层中,模型预测控制(MPC)通过预测未来系统行为来做出决策,在未来的一个给定时间窗口内解决一个最优化问题,以寻找控制输入,最小化成本并满足约束。MPC 需要系统模型、成本函数、预测时间段、约束和反馈来运作,通过预测未来情况,机器人可产生相应动作进行“预判”,一定程度上加大机器人实用性。以足式机器人为例,可将 MPC 用于全身控制,能协调身体各部分,通过观测地面环境提前给出控制量,减缓欠驱动状态下系统的不稳定性,减少接触模态干扰,增强四足稳定性。此类路线的代表为波士顿动力,优点是传统算法可靠性高、可解释性强,缺点是对于 corner case(如光滑地面)处理不好。
  • 11 月 25 日,Anthropic 发布开源 MCP 协议,其亮点是定义了一套标准且相对完善的协议,对大模型和应用的生态协同有很大指导意义,本质上是对 LLM 和 API 调用层的优化。
Content generated by AI large model, please carefully verify (powered by aily)

References

Claude 直接连接到 GitHub、创建新存储库并通过简单的 MCP 集成创建 PR。

https://x.com/alexalbert__/status/1861079762506252723Anthropic推出模型上下文协议(MCP)Claude Desktop现在可以直接连接到GitHub、创建新的存储库并创建PR模型上下文协议(MCP)简介我们在Anthropic一直在研究一个开放标准,它解决了LLM应用程序的核心挑战-将它们连接到您的数据。不再为每个数据源构建自定义集成。MCP提供一种协议来连接它们:

具身智能赛道爆发的前夕,我们应该了解些什么?(上)|Z研究第 5 期

传统控制算法:模型预测控制(Model Predictive Control):通过预测未来系统行为来做出决策,在未来的一个给定时间窗口内解决一个最优化问题,以寻找控制输入,最小化成本并满足约束。MPC需要系统模型、成本函数、预测时间段、约束和反馈来运作,通过预测了未来会发生什么事情,机器人可以产生相应的动作来进行“预判”,在一定程度上加大了机器人的实用性。以足式机器人为例,一种使用方法是将MPC用于全身控制(Whole Body Control),由于利用MPC预测了未来一个预测时间步长的状态与控制序列,使得机器人可以协调身体的各个部分;可以通过观测到的地面环境提前给出相应的控制量,减缓欠驱动状态下的系统的不稳定性,通过优化得出最佳地面接触力作为控制量,在欠驱动状态下与地面的短时接触中,减少接触模态的干扰,增强四足的稳定性。此类路线的代表为波士顿动力,它的优点是传统算法可靠性高、可解释性强,而缺点是对于corner case(例如光滑地面)处理不好。第二阶段:采用深度强化学习

赛博月刊@24年11月:AI行业大事记

是Anthropic版本的Function Calling,只能用在客户端,需要开发能力。MCP的亮点是定义了一套标准且相对完善的协议,对于大模型和应用的生态协同有很大的指导意义。本质上是对LLM和API调用层进行的优化。Chat API的格式,大家基本都跟着OpenAI走了。Claude这把想让Agent API的格式,跟着他们走。https://www.anthropic.com/news/model-context-protocolhttps://m.okjike.com/originalPosts/67469876ba0429bf87824471[heading4]【模型】AndrewNG(吴恩达)●aisuite大模型套件开源[content]把11家知名大模型平台集中到了一起,统一了接口,可以用相同的方式调用不同模型。切换模型时,只需要改动一个字符串,不用在不同的API之间摸不着头脑了。https://github.com/andrewyng/aisuite[heading4]【模型】阿里巴巴●Marco-o1开放型问题推理模型开源[content]模型通过思维链(CoT)微调、蒙特卡罗树搜索(MCTS)、反思机制和创新的推理策略提供支持。模型目标是解决这个问题:o1模型能否有效地推广到缺乏明确标准且奖励难以量化的更广泛领域?https://github.com/AIDC-AI/Marco-o1Hugging Face:https://huggingface.co/AIDC-AI/Marco-o1

Others are asking
有什么 prompt engineering 的好材料
以下是一些关于 prompt engineering 的好材料: 文本类 Prompt 网站: Learning Prompt:授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney,网址: FlowGPT:国外做的最大的 prompt 站,内容超全面,更新快,网址: ChatGPT Shortcut:ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出,网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享,网址: Prompt Extend:让 AI 帮你自动拓展 Prompt,网址: PromptPerfect:帮你自动优化提示词,你可以看到优化前后的对比,网址: PromptKnit:The best playground for prompt designers,网址: PromptPort(支持中文):AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt,网址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,网址: Claude 3.7 核心提示词相关: 您可以在中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 一泽 Eze 整理的相关学习资料: Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library 基本概念: 简单的提示词可以包含指令、问题等信息,也可以包含上下文、输入或示例等详细信息,以更好地指导模型获得更好的结果。 当使用 OpenAI 的聊天模型时,可以使用 system、user 和 assistant 三个不同的角色来构建 prompt,system 有助于设定 assistant 的整体行为。 提示工程就是探讨如何设计出最佳提示词,用于指导语言模型帮助我们高效完成某项任务。
2025-04-12
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答
以下是为您提供的关于捏制 AI Agent 的相关知识: 一、手捏 AI Agent 的思路 在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 二、AI Agent 的概念 AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 三、Agent 的“明斯基时刻” 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 其特点包括: 1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。 3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能: 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
2025-03-23
我想找最新的关于大模型发展趋势的材料
以下是为您找到的关于大模型发展趋势的最新材料: 基础通识课中提到了 AI 模型及相关进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。还介绍了人工智能的发展历程,从早期到如今大模型和多模态模型百花齐放的阶段。同时提到大模型由数据、算法、算力构成,算法有技术架构的迭代,数据质量对生成理想的大模型至关重要,以及针对弱智 8 的问题对大模型进行测试等相关内容。 2023 年度中文大模型基准测评报告.pdf 中包含 2023 年国内大模型发展趋势、测评体系、方法说明、综合测评结果、SuperCLUE2.0 升级、四大维度测评分析及示例介绍、优秀模型案例介绍等内容。 2024 年历史更新(归档)中,有《探讨大模型未来:从 Scaling Law 到数据红利再到终极 Token 工厂》,探讨了大模型的未来,包括规模化法则、数据红利和 Token 工厂概念。还有《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》《智变时代/全面理解机器智能与生成式 AI 加速的新工业革命》《文生图大模型基准测评首期榜单公布,DALLE 3 取得最高 76.94 分》等相关文章。
2025-03-23
帮我找下提示词学习材料
以下是为您提供的提示词学习材料: 一、关于提示词的一般理解 提示词(Prompt)是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出。它发挥着“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解需求并给出符合预期的结果。示例包括直接提问型、策略建议型、翻译型、算数型、概念解释型等。 二、系统学习 Stable Diffusion 提示词的步骤 1. 学习基本概念 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 三、Claude 3.7 核心提示词相关资源 Anthropic 定期对外更新 Claude AI 的核心系统提示词,为广大提示工程师提供了宝贵的学习资料。您可以在以下链接中找到更多相关内容: 1. 中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 2. Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A 3. Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 4. 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts 5. Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview 6. Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library
2025-03-15
AI音乐发布要准备哪些材料
发布 AI 音乐通常需要准备以下材料: 1. 音频文件:确保音频质量良好。 2. 歌词: 文本歌词需做成 TXT 格式上传。 可通过自带功能将文本歌词同步为逐字歌词 TRC,修正错别字后提交。 3. 描述音乐风格:如民谣、流行、嘻哈、国风等。 4. 若为人声歌曲,还需准备歌词:可以自己创作,也可让 AI 帮忙写作。 5. 选择音乐库中的合适音乐。 此外,在一些相关教程中还提到: 收藏过的满意音乐素材、音效素材以及抖音里收藏的音乐。 音效库方面,可通过搜索相应音效,如开门声,并添加到音轨。
2025-03-11
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI办公相关的课程、软件教学
以下是为您提供的 AI 办公相关的课程和软件教学资源: 1. 90 分钟从 0 开始打造您的第一个 Coze 应用: 课程包含从零开始的应用界面教学,涉及过年相关应用。 介绍了当前承接的业务,包括辅导、培训、定制及企业 AI 落地等。 提到 11 月底应用推出背后的情况,包括社区对 AI 应用的呼声和功能需求挖掘。 2. AI 视频的软件教程: 涵盖了众多工具,如剪映、Dreamina、Pika、StableVideo、Pixverse、morphstudio、Runway Gen3、Adobe Firefly 以及清影等。 3. 张翼然:用 AI 为教师减负(3H).pdf: 包括教师的 AI 减负指南,生成式人工智能在教学中的应用。 介绍了教师使用 AI 的小技巧,如提示词设计公式之——RTFC。 涉及使用 AI 生成图片的方法与注意事项,AI 自动生成 PPT 功能。 展示了通过小程序实现文字与声音、视频的转化,自定义数字人形象进行教学。 展示了便捷的课堂教学工具与 Ai 课件制作,探讨了 A 生成视频与手工制作视频的教学效果差异。 强调了教育资源与版权问题,教师能力重塑,极简思维的教育应用,生成式 AI 教学策略。 包括 AI 技术助力教育管理和辅助教学实践,如班级与学校管理中的行政职日流程简化、听课记录自动化等。
2025-04-12
我想要自学AI相关的知识,但不知道从哪里开始,需要一个行动方案,我未来想做一个ai产品经理
以下是为您提供的自学 AI 知识并成为 AI 产品经理的行动方案: 1. 应用方面: 深入了解 Prompt,选择适合自己的 AI 对话、绘画和语音产品,每天使用并用于解决实际问题或提升效率。 2. 分析方面: 大量阅读各类文章、视频以及行业报告,理解各知识之间的关系。 3. 掌握相关技能: 了解目前 AI 提示词工程师岗位的招聘技能要求,例如: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 4. 了解产品经理工作: 调研市场、思考需求、转化需求、思考解决方案、设计解决方案、分配任务、进行测试、实现解决方案。 像善用提示词工程的人一样,将需求抽象再具象成产品。 总之,要成为 AI 产品经理,需要不断学习和实践,适应行业的发展和变化。
2025-04-12
用deepseek写一份课题申报书,请提供相关指令
以下是一些用 DeepSeek 写课题申报书的相关指令和要点: 1. 思维链引导: 分步标记法:请逐步思考,如问题分析→方案设计→风险评估。 苏格拉底式追问:在得出最终结论前,先列举三个可能存在的认知偏差。 2. 知识库调用: 领域限定指令:基于特定的标准或文献,如 2023 版中国药典,说明相关内容。 文献引用模式:以特定的论文为参考,解释相关突破。 3. 多模态输出: 模糊指令优化:对于宽泛需求添加维度约束,将主观表述量化标准。 迭代优化法:包括首轮生成获取基础内容、特征强化、风格调整和最终校验等步骤。 4. 在课题申报书的内容方面: 关于提示词编写及 AI 应用的探讨:介绍用于不确定世界中理性决策的提示词编写方法,包括收集信息、重新定义问题、运用 Mini Max Regret 方法等步骤。注意示例的价值,自用与他用提示词在稳定性、经济性、可维护性等方面的区别。 AI 应用于软件开发:未来借助 AI 模型的 API 和编写提示词,可快速实现软件开发。 关于写作与模型:用 DeepSeek 写小说要能引起共鸣和考虑人类共性,文字要感动人。注意模型特点与推荐,如 Cloud 3.5 模型多样性差,DeepSeek R1 有缺陷但也不错。 以上内容仅供参考,您可以根据具体的课题需求进一步调整和完善。
2025-04-11