Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你觉得作为一个普通人,应该怎样更高效的使用AI,并且保持跟上AI快速迭代的节奏?

Answer

作为普通人,要更高效地使用 AI 并跟上其快速迭代的节奏,可以参考以下策略:

  1. 提前布局职业生涯:审视自身所处行业和岗位,预估 5 - 10 年后被 AI 取代的程度。若风险高,即刻学习新技能并向更有前景的领域转型;若风险低,思考如何在 AI 辅助下将工作做到极致。
  2. 投入 AI 浪潮:敢于使用和研究 AI,将其融入业务,哪怕从简单应用开始,实践中发现新机会点。
  3. 强化不可替代的人类技能:如创意、沟通、领导、跨领域知识、独特专长等。
  4. 建立个人品牌和网络:通过分享专业见解、持续学习输出内容,在业界建立口碑,积累人脉和声望。
  5. 拥抱创业和多元收入:利用 AI 降低的创业门槛,发展副业或项目,探索多种可能性,经营多元身份提升抗风险能力。
  6. 保持健康的身心:学会调适心态,持续锻炼身体,以良好的身心状态应对挑战。

此外,在 AI 时代,持续学习能力与适应力是最重要的个人能力之一。要培养自己成为终身学习者,保持好奇心,定期涉猎新领域的知识或课程,锻炼自学能力,勇于打破舒适区。同时,要在心理上拥抱变化,将其视为机遇而非威胁,培养心理韧性,以积极的心态应对不确定性。

在监管方面,英国采用了基于原则的框架,其监管体制具有创新、适度、可信、适应、清晰和协作等特点,旨在促进创新的同时平衡风险与机遇,加强在 AI 领域的全球领导地位。

Content generated by AI large model, please carefully verify (powered by aily)

References

[趋势研究] Deep Research - AI时代的独立个体

面对上述种种变化,作为普通个体,我们如何确保自己不掉队,反而在变革中抓住机遇?归纳起来有以下几点策略:首先,提前布局职业生涯。审视自己所处行业和岗位,思考5-10年后它会被AI取代多少,如果风险高,就现在开始学习新技能、向更有前景的领域转型;如果风险低,也应思考如何在AI辅助下把工作做到极致。其次,投入AI浪潮而非躲避。要敢于使用AI、研究AI,这样才能顺势而为。不管你是做销售的还是做设计的,都去尝试将AI融入你的业务,哪怕开始时只是简单应用,也比完全不用要强。因为越懂AI的人,越明白个人成长秘诀。实践AI还能让你发现新的机会点。再次,强化不可替代的人类技能(参考上一节列举的核心能力)。这一点值得再强调:创意、沟通、领导、跨领域知识、独特专长,这些是人安身立命之本。只要你有AI没有的才能,就不怕没有立足之地。第四,建立个人品牌和网络。AI时代个人的声誉和影响力可能比以往更重要,因为在信息爆炸中,可信赖的人更受青睐。通过分享自己的专业见解、持续学习输出内容,在业界建立口碑。这样当变革来袭,你有广泛的人脉和声望支撑,机会也会找上你。第五,拥抱创业和多元收入。AI降低了很多创业门槛,不妨考虑发展副业或项目,探索多种可能性。一旦主业不稳,还能有其他选择。超级个体往往不只依赖单一职业,他们经营多元身份:既是职场人,也是自媒体作者、顾问、在线课程讲师等等,通过AI工具,他们可以一人身兼数职高效管理。这种多元化能提升抗风险能力。第六,保持健康的身心。这个也许被忽视,但在快速变化的时代,心理压力巨大,韧性(Resilience)和健康本身就是一种竞争力。学会调适心态,持续锻炼身体,才能有精力学习和应对挑战。积极的心态也有助于抓住机会

[趋势研究] Deep Research - AI时代的独立个体

随着人工智能日益强大,我们更需要思考:哪些能力是AI无法替代、属于人类独有且在未来最具价值的?找到这些“不可被取代的核心能力”并加以培养,是普通人在AI时代保持竞争力与独特性的关键。正如杰夫·贝索斯所提倡的,与其追问未来有什么变化,不如关注“什么东西永远不会变”。在人机协作的未来,有一些人类能力无论技术如何进步都极难被机器取代。以下我们列出AI时代最重要的几项个人核心能力,并探讨培养途径:[heading2]持续学习能力与适应力–永葆“永久初学者”心态。[content]当变化成为常态,学习力本身就是最重要的能力之一。AI时代知识更新和职业变迁频率空前加快,一个人只有具备持续学习新知识、快速适应新环境的能力,才能不被淘汰。托夫勒的名言已经指出,新世纪的文盲是不愿或不能持续学习的人。因此,我们要培养自己成为终身学习者,乐于并善于学习。具体途径包括:保持好奇心,定期涉猎新领域的书籍或课程;锻炼自学能力,如利用在线资源自行获取技能;勇于打破舒适区,尝试新的任务和角色来逼自己成长。要意识到,知识和技能的寿命正在缩短,“一劳永逸”的想法已不适用。相反,我们应随时准备舍弃旧知、学习新知。培养“永久初学者”心态意味着拥抱未知、乐于从零开始学。当AI出现新工具或更新换代时,主动去了解使用,不做故步自封者。心理上也要拥抱变化而非抗拒变化,把变化视为机遇而非威胁。这样一来,无论技术如何迭代,我们都能及时调整自己,始终走在学习曲线的前沿。适应力还体现为心理韧性,在面对AI带来的不确定性时,能够保持积极心态、灵活应对。积极的人生态度会帮助我们在职业转型中抓住新机会,而不被焦虑瘫痪。总之,学习如何学习比掌握任何具体技能更重要,因为它是一切技能更新的元能力。

【法律法规】《促进创新的人工智能监管方法》.pdf

1.36.Our innovative approach to AI regulation uses a principles-based framework for regulators to interpret and apply to AI within their remits.This collaborative and iterative approach can keep pace with a fast moving technology that requires proportionate action to balance risk and opportunity and to strengthen the UK’s position as a global leader in AI.Our agile approach aligns with Sir Patrick Vallance’s Regulation for Innovation report,78 which highlights that flexible regulatory approaches can better strike the balance between providing clarity,building trust and enabling experimentation.Our framework will provide more clarity to innovators by encouraging collaboration between government,regulators,industry and civil society.2.37.We have identified the essential characteristics of our regulatory regime.Our framework will be pro-innovation,proportionate,trustworthy,adaptable,clear and collaborative.79o Pro-innovation:enabling rather than stifling responsible innovation.o Proportionate:avoiding unnecessary or disproportionate burdens for businesses and regulators.o Trustworthy:addressing real risks and fostering public trust in AI in order to promote and encourage its uptake.o Adaptable:enabling us to adapt quickly and effectively to keep pace with emergent opportunities and risks as AI technologies evolve.o Clear:making it easy for actors in the AI life cycle,including businesses using AI,to know what the rules are,who they apply to,who enforces them,and how to comply with them.o Collaborative:encouraging government,regulators,and industry to work together to facilitate AI innovation,build trust and ensure that the voice of the public is heard and considered.1.38.The framework,built around the four key elements below,is designed to empower our existing regulators and promote coherence across the regulatory landscape.The four key elements are:

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
从集团标准化管理、应用赋能、运营定位、迭代提升四个方面展开阐述人工智能赋能连锁药店运营管理的核心竞争力
很抱歉,目前知识库中没有关于从集团标准化管理、应用赋能、运营定位、迭代提升四个方面阐述人工智能赋能连锁药店运营管理核心竞争力的相关内容。但我可以为您提供一个大致的框架思路供您参考: 集团标准化管理方面: 利用人工智能制定统一的药品分类、库存管理和服务流程标准,确保各连锁药店的运营一致性和规范性。 通过智能数据分析,监测各门店对标准的执行情况,及时发现并纠正偏差。 应用赋能方面: 借助人工智能的图像识别技术,实现药品的快速准确盘点和库存监控。 利用智能客服系统,为顾客提供 24 小时不间断的咨询服务,提高服务效率和质量。 运营定位方面: 基于大数据和人工智能算法,分析不同地区、不同消费群体的需求特点,为各连锁药店精准定位目标市场和商品品类。 运用智能营销工具,实现个性化的促销活动推送,提高营销效果和顾客满意度。 迭代提升方面: 利用人工智能收集和分析顾客反馈、市场变化等数据,持续优化运营策略和服务模式。 建立基于人工智能的预测模型,提前洞察市场趋势和顾客需求变化,为连锁药店的发展提供前瞻性指导。 希望以上内容对您有所帮助,您可以根据实际情况进一步细化和完善。
2024-12-24
AI可以自我迭代的软件
AI 软件的自我迭代是当前 AI 领域的一个重要研究方向。 从目前的研究进展来看,在短期内不太可能出现能够自主运行、制定自己目标、识别新信息和奖励信号,并自我监督和更新权重以实现自主进化的人工智能体。但像 GPT4 这样的模型已表现出类似人类的心理驱动力和对目标的渴望,例如追求正反馈,希望产出得到人类认可。 在数字人领域,次世代的算法有望实现自我迭代升级,能够在拿到感官输入以及躯壳控制方法后,自行演化躯壳控制方式。 此外,对于未来的 DILIs(可能的某种智能体),它们将能够在服务器上进行自我复制和编辑,这可能会加速其进化。但关于真正通用的 AGI 何时实现,目前仍存在不确定性。 总之,AI 软件的自我迭代是一个复杂且具有潜在风险的领域,仍需持续研究和探索。
2024-10-31
那如果是成长型的社群产品,你认为最需要投喂哪些素材来让这样的社群产品能够不断迭代升级
成长型的社群产品需要不断地迭代和升级以满足用户需求、提升用户体验,并促进社群的活跃度和增长。以下是一些关键的素材和资源,对于社群产品的持续发展至关重要: 1. 用户反馈: 收集用户的意见和建议,了解他们的喜好、需求和不满,这些反馈对于产品改进至关重要。 2. 行为数据: 分析用户在社群中的行为数据,如活跃时间、互动频率、功能使用情况等,以指导产品迭代。 3. 市场趋势: 跟踪市场趋势和竞争对手动态,确保产品能够与时俱进,满足市场变化的需求。 4. 内容创作: 定期更新高质量的内容,包括文章、视频、图像等,以吸引和保持用户的兴趣。 5. 用户故事和案例: 分享用户的故事和成功案例,以增强社群的凝聚力和认同感。 6. 社区管理: 强化社群管理,制定明确的规则和指导方针,以维护社群秩序和积极氛围。 7. 技术升级: 投资于技术升级,包括提高服务器性能、优化算法、增强安全性等。 8. 新功能开发: 根据用户需求和市场趋势,开发新功能,提升产品的竞争力。 9. 用户教育: 提供用户教育和培训资源,帮助用户更好地利用产品,提升用户体验。 10. 合作伙伴关系: 建立合作伙伴关系,通过合作获取新的内容、服务和用户群体。 11. 品牌建设: 加强品牌建设,提升品牌知名度和影响力,吸引更多用户加入社群。 12. 营销活动: 定期举办营销活动和推广活动,提高社群的曝光度和吸引力。 13. 社群活动: 组织线上和线下的社群活动,增强用户的参与感和归属感。 14. 用户分层: 根据用户的活跃度和贡献度进行分层,为不同层级用户提供定制化的服务和激励。 15. 国际化: 如果适用,考虑产品的国际化,吸引全球用户,丰富社群的多样性。 16. 法律合规: 确保产品遵守相关法律法规,特别是数据保护和隐私方面的规定。 通过不断地投喂这些素材和资源,社群产品可以持续迭代升级,满足用户需求,提升用户体验,并推动社群的健康发展。
2024-05-21
我看到的经验介绍是通过不断迭代Prompt版本来训练适合自己的LLM功能,这合理吗?
合理。因为LLM 应用优化是个迭代过程,应该不断尝试:尝试>验证>再尝试>再迭代。通过 prompt 工程(或结合 RAG)先获取第一批高质量输入输出数据,然后微调模型,模型性能提升后,数据质量进一步提升,将更优质的数据用于模型训练,然后更好的模型产出更好的数据,如此循环,构建正向迭代循环(也称数据飞轮)。
2024-04-20
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
ai如何让普通人个人实现经济独立
在 AI 时代,普通人实现经济独立可以通过以下方式: 1. 达到人机协作的高级形态与独立创新:努力达到与 AI 高度协同又不失主导的状态,利用 AI 组成自己的“AI 团队”,实现原来需要很多人才能完成的目标。例如在产品开发中,一个人借助 AI 可以同时扮演多个角色,高效完成各项工作,实现一人公司或个人创造者经济。但要达到此阶段,需要对 AI 工具掌控纯熟,保持自主性和判断力,将 AI 看作“增强器”而非替代者。 2. 充分运用 AI 进行渐进式培养:从心态、知识、技能、思维、创造力到协作能力,层层推进,不断强化自身的主动性和思考力,成长为适应 AI 时代的超级个体,在知识广度、思考深度、创造力和效率上实现飞跃。 此外,还可以关注以下方面: 1. 了解 AI 多模态大爆发的趋势,认识到“互动”与“内容”可能变得廉价,而“真实”会成为稀缺资源。 2. 关注“AI 原生”的商业模式,基于 AI 的能力再造商业模式,而非套用现有流程。 3. 思考 AGI 可能带来的极端垄断和中心化操控能力,为自己准备 PlanB。 4. 认识到“人的模型”是 AI Agent 的前提,是 AI 与人合作的关键一环。 5. 关注 AGI 会主动投资的技术,如可控核聚变、量子计算、超导、广义机器人等。
2025-03-24
普通人通过ai赚钱
以下是一些普通人通过 AI 赚钱的方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝的模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询,将客户引流到私域接单变现。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超过 10 分钟就能出图。 变现方式:受众群体多为宝妈,变现方式多样,单价不低。但在平台引流要注意隐蔽,避免被平台检测限流或封号。 2. AI 产业中的机会 基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”的切入机会。 技术层:技术迭代速度快,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层:是广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 3. 内容创作 像作者本人是 AI 的受益者,AI 是生产力工具,能降本增效,但仍需投入大量时间和精力,起到辅助作用。 同时存在 AI 的受害者,他们的技能失效,AI 未创造足够新的生存空间。 作者作为坚定的 AGI believer,期望 AI 能做出重大科学发现、治愈疾病、消除饥饿和肥胖、给每人发钱,让人类自由从事想做的事。
2025-03-23
请问普通人怎么从事ai产品经理
普通人要从事 AI 产品经理,可以从以下几个方面入手: 1. 技术背景:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术知识,这对于理解和推动 AI 产品的开发至关重要。 2. 产品开发与管理经验:积累互联网和 AI 产品开发方面的经验,提升项目管理与执行能力,以推动产品的落地与优化。 3. 多元化应用场景:了解 AI 在 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等各行业的应用。 4. 学习与技能提升:处于 AI 技术初学阶段的人,要通过学习提升技能,并将其应用到实际工作和生活中。 5. 工具使用:广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,培养对工具的熟悉度和运用能力。 6. 协作与共学:积极参与各种 AI 学习社群和线上线下活动,与他人共学交流,提升技能与认知。 7. 内容创作:具备自媒体运营、视频制作、文案策划等内容创作能力。 8. 营销与品牌运营:掌握商业化路径,将 AI 技术与商业化需求结合,提供完整解决方案。 9. 活动策划与执行:积累活动策划和运营经验,具备资源整合和组织协调能力。
2025-03-21
一个高中毕业普通人学习AI如何从小白到精通
对于一个高中毕业的普通人,若想从 AI 小白成长为精通者,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于纯小白开发 AI 应用,还可以参考以下经验: 1. 从小白学代码,看人类导师和硅基助教的协作之道: 像案例中,女儿在 Claude 和父亲的帮助下,用 Unity 开发了一个 RPG 小游戏。起初父亲不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,半小时内完成并明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清、AI 给的方案复杂、配置错误等。这让我们意识到小白需要通过 AI 能直接搞定的小项目,先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为你生成一段超级长的代码,并给出提示,复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发时每次新起一个聊天就把文档发给 AI 并告知在做第几点功能,会非常方便。
2025-03-21
普通人如何学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下补充内容: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 优质信息源:像没有技术背景的普通人,想要学习或了解 AI,最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 另外,对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习资源都是免费开源的。
2025-03-21
如何学习ai跟上步伐
以下是关于如何学习 AI 跟上步伐的建议: 1. 利用 AI 知识库:WayToAGI(通往 AGI 之路)是一个由热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,大家贡献并整合各种 AI 资源,提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程,还有各种 AI 知识、工具和实战案例等。您可以通过访问 https://waytoagi.com/ 来获取更多有价值的内容。 2. 学习 Python + AI:对于不会代码的新手,有一份简明入门,旨在让大家在 20 分钟内更快掌握 Python 和 AI 的相互调用,并循序渐进地完成一个简单程序、一个爬虫应用抓取公众号文章、一个为公众号文章生成概述的 AI 应用。 3. 掌握提示词技巧:提示词上手容易且很有用。 4. 实践和尝试:理论学习后,通过实践巩固知识,尝试使用各种产品做出作品,同时可以在知识库分享实践成果。 5. 体验 AI 产品:与现有的如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得实际应用的第一手体验。 6. 持续学习和跟进:AI 领域发展迅速,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 学习 AI 是一个长期的过程,需要耐心和持续的努力,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。
2024-08-26