Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是IVD企业的技术中心主任,我想构建我们技术中心的知识库,有什么AI工具可以帮我实现

Answer

以下是一些可以帮助您构建技术中心知识库的 AI 工具及相关步骤:

Dify

  1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。
  2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写清晰的描述,说明其包含的内容和特点。
  3. 配置索引方式:Dify 提供了高质量模式、经济模式和 Q&A 分段模式三种索引方式,您可根据实际需求选择,如追求更高准确度可选高质量模式。
  4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,配置数据集的使用方式,如是否允许跨数据集搜索等。
  5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。

其他相关场景和应用

  1. 提示词帮您规划 PARA 分类模式:PARA 代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI 可通过分析您的工作模式和内容类型,自动生成提示词,帮助您将信息和知识分类到 PARA 的相应部分,简化分类过程,更快组织和检索信息。
  2. 提示词帮您设计笔记标签系统:AI 能通过分析您的笔记内容和使用习惯,推荐合适的标签和标签结构,提高笔记管理和检索效率。
  3. 知识助手 Bot 帮您渐进式积累领域知识:例如基于 dify.ai 将数百个思维模型整合成一个知识库,根据不同的对话和条件判断为用户选择适用的思维模型分析工具,封装成一个智能分析的 Bot,能根据您的学习进度和兴趣点,定期推送相关文章、论文和资源,持续扩展知识边界并确保知识及时更新。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:Dify 构建知识库的具体步骤

使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别

元子:WayToAGI 知识库究竟咋用?

|分类|标题|文章链接|视频链接|适用人群|简要说明||-|-|-|-|-|-||工具入门篇<br>(AI Tools)|数据工具-多维表格小白之旅|[元子:小白的多维表格+AI 0基础尝试](https://waytoagi.feishu.cn/wiki/FAeowdS6MiK5Fcke1oNcJ18lnve)|[【智能体搭建共学课】Coze发布到多维表格,简直太逆天了!!特邀讲师:元子_哔哩哔哩_bilibili](https://www.bilibili.com/video/BV1uGi9YwEyC/?vd_source=290a2836f7818edc2c18c6eb525d4abe&spm_id_from=333.788.videopod.sections)|Excel重度使用者、手动数据处理使用者、文件工作者|用表格+AI进行信息整理、提效、打标签,满足80%数据处理需求||工具入门篇<br>(AI Code)|编程工具-Cursor的小白试用反馈|[元子:小白的30min Cursor AI编程上手步骤](https://waytoagi.feishu.cn/wiki/VSXLwdLERijGaukAnagcB9h9nqd)|暂无|0编程经验、觉得编程离我们很遥远的小白|通过AI工具对编程祛魅,降低技术壁垒||工具入门篇<br>(AI Music)|音乐工具-Suno的小白探索笔记|[元子:小白的Suno探寻笔记](https://waytoagi.feishu.cn/wiki/X9gSwxjA2ijeLnkOY8ucdVk6nxb)|暂无|0乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白|AI赋能音乐创作,无需乐理知识即可参与音乐制作|

小七姐:AI 时代的知识管理体系构建

构建高效的知识管理体系可以通过一系列创新的AI应用来实现,这些应用使个人和组织能够以前所未有的速度和深度管理和利用知识。下面是一些具体场景及其实现的场景:[heading3]1.提示词帮你规划你的PARA分类模式[content]PARA是一种流行的知识管理框架,它代表项目(Projects)、领域(Areas)、资源(Resources)和档案(Archives)。AI可以通过分析你的工作模式和内容类型,自动生成提示词,帮助你将信息和知识分类到PARA的相应部分。这种方法可以大大简化分类过程,使你能够更快地组织和检索信息。我们可以用如下方式重新规划我们的笔记系统:核心是需要理解以行动为驱动的笔记逻辑。提示词:[heading3]2.提示词帮你设计笔记标签系统[content]一个有效的标签系统是知识管理的关键,但设计一个既全面又不过度复杂的标签体系并非易事。AI可以通过分析你的笔记内容和使用习惯,推荐合适的标签和标签结构。这种自动化的提示词功能可以帮助你更高效地管理笔记,提高检索效率。提示词:[heading3]3.知识助手BOT帮你渐进式积累领域知识[content]随着你在特定领域的深入,需要系统地积累和更新知识。一个知识助手Bot可以根据你的学习进度和兴趣点,定期推送相关的文章、论文和资源。这种渐进式的学习方法,不仅可以帮助你持续扩展知识边界,还能确保知识的及时更新。例如我们可以基于dify.ai将数百个思维模型整合成一个知识库,根据不同的对话和条件判断来为用户选择适用的思维模型分析工具,以此封装成一个智能分析的Bot

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19
万卡智算中心该如何设计?
设计万卡智算中心可以参考以下思路: 1. 工作流设计: 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集关键信息。 卖点提炼与优化:运用先进的大模型,对信息进行分析,提炼出具有竞争力和独特性的卖点。 买点转化与策略应用:将卖点转化为消费者视角的买点,运用行为心理学和市场营销策略增强吸引力。 视觉化信息呈现:设计直观且有冲击力的卡片展示,确保信息传达有效且有视觉吸引力。 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容最佳适配。 流程结果存储与分析:将处理结果系统化存储到飞书,以供未来策略优化和决策支持。 2. 多智能体模式设置: 全局设置:包括角色设定与回复逻辑、记忆管理以及对话体验等全局性因素。 多个代理之间的编排和协调:设计思路关键在于让节点形成完整的互动链条,而非一次性互动。当用户意图未满足跳转条件时,保持与当前智能体沟通对话。采用循环机制,而非单向流程,设计为闭环结构,确保用户能在不同智能体间自由切换。例如在旅游场景中,设计分别负责景点推荐、路线规划和食宿安排的三个智能体。先写好提示词,做好全局人物设定,然后在扣子上进行编排。
2024-12-14
数据中心运维服务的智能体构建
以下是关于数据中心运维服务智能体构建的相关内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流(如整理入库、选择内容)添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可按需求和实际效果优化调整)。完成上述步骤后,能在「预览与调试」窗口与 AI 稍后读智能体对话并使用全部功能。 智能体在品牌卖点提炼中的应用 搭建一个智能体帮助提炼卖点: 1. 确定智能体的结构:按照市场营销的逻辑组织智能体的结构。 2. 搭建完整智能体: 以品牌卖点提炼六步法为核心的流程,包括探索、排列、抽取、收敛、确认、应用流程。 加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等。 还包括一些在后续品牌卖点应用过程中有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。
2024-11-19
和ai结合的去中心化算力项目或者公司或者产品有哪些?
以下是一些与 AI 结合的去中心化算力项目、公司或产品: 智谱·AI 开源模型列表中的 WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。代码链接: 智谱·AI 开源模型列表中的 WebGLM2B 智谱·AI 开源模型列表中的 MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。代码链接: 智谱·AI 开源模型列表中的 MathGLM500M,模型下载: 智谱·AI 开源模型列表中的 MathGLM100M,模型下载: 智谱·AI 开源模型列表中的 MathGLM10M,模型下载: 智谱·AI 开源模型列表中的 MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。模型下载: 智谱·AI 开源模型列表中的 MathGLM10B,模型下载: 智谱·AI 开源模型列表中的 MathGLMChatGLM6B,模型下载:
2024-10-14
扩展以下内容到500字:数智中医是中医药融入“一带一路”的抓手当前,充分融合互联网、大数据、物联网、云计算、人工智能AI、区块链等数智技术对传统中医药服务进行全方位、全链条优化,提高全要素生产率,构建一批示范中医医疗机构、中医馆、中医健管中心,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,促进数智中医“产学研用”的国际合作及产业发展,助推重庆成为数智中医发展新高地。
数智中医作为中医药融入“一带一路”的重要抓手,在当今时代具有极其重要的意义。 如今,互联网、大数据、物联网、云计算、人工智能 AI、区块链等数智技术蓬勃发展,为传统中医药服务带来了全新的机遇。通过充分融合这些先进技术,能够对传统中医药服务进行全方位、全链条的优化。这种优化涵盖了从检测到管理的各个环节,全面提升了服务的质量和效率。 在检测方面,借助先进的技术手段,可以更精准地获取患者的身体状况信息,为后续的诊断提供更可靠的数据支持。诊断环节则因数智技术的融入而更加准确和高效,能够快速识别病症的根源。治疗过程中,数智技术能够辅助医生制定更个性化、更科学的治疗方案,提高治疗效果。 评价环节也得以创新,能够更全面、客观地评估治疗效果和患者的康复情况。而在管理方面,数智技术有助于实现对医疗资源的合理调配和高效管理,提高整个医疗服务体系的运行效率。 构建一批示范中医医疗机构、中医馆、中医健管中心,是推动数智中医发展的重要举措。这些示范机构将成为展示数智中医成果的窗口,吸引更多的关注和投入。同时,创新数智中医“检测、诊断、治疗、评价、管理”的新中医服务闭环,能够形成一个良性循环,不断提升服务水平和质量。 促进数智中医“产学研用”的国际合作及产业发展,对于推动中医药走向世界具有关键作用。通过国际合作,可以吸收借鉴其他国家的先进经验和技术,进一步完善数智中医体系。这将有助于提升我国中医药在国际上的影响力,为全球健康事业贡献中国智慧和力量。 重庆作为一个具有发展潜力的地区,有望借助数智中医的发展,成为这一领域的新高地,引领行业的发展潮流,为当地乃至全国的中医药事业注入新的活力。
2024-08-12