Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有关国产大模型介绍及对比

Answer

以下是关于国产大模型的介绍及对比:

过去一年,国内大模型取得了显著进步。综合能力超过 GPT 3.5 和 Gemini-Pro 的国产模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 和 Qwen 72B-Chat、OPPO 的 AndesGPT、清华&智谱 AI 的智谱清言、字节跳动的云雀大模型等。在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距约 4 分,且国内外平均水平差距在缩小。

国内开源模型在中文上表现优于国外开源模型,如百川智能的 Baichuan2-13B-Chat、阿里云的 Qwen-72B、Yi-34B-Chat 均优于 Llama2-13B-Chat。国内大模型竞争格局方面,从国内 TOP19 大模型的数量来看,创业公司和大厂的占比几乎持平。

此外,还有针对国产大模型的测评机制,包括以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等方面进行多轮测评。

国外的代表性大模型如 GPT4 的不同版本、Claude2、Llama2 有较好的稳定性表现。国内开源模型总体表现较好,成绩最好的开源模型在中文某些场景或任务上接近 GPT 4,大版本的模型通常优于中小版本,众多创业公司是开源模型的主力。

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

必须看到的是,过去1年国内大模型已经有了长足的进步。综合能力超过G P T 3.5和Gemini-Pro的模型有11个,比如百度的文心一言4.0、阿里云的通义千问2.0和Qw e n 72B-Chat、OPPO的AndesGPT、清华&智谱AI的智谱清言、字节跳动的云雀大模型等都有比较好的表现。•在SuperCLUE测评中,国外模型的平均成绩为69.42分,国内模型平均成绩为65.95分,差距在4分左右。另外国内开源模型在中文上表现要好于国外开源模型,如百川智能的Baichuan2-13B-Chat、阿里云的Qwen-72B、Yi-34B-Cha t均优于Llama2-13B-Chat。•可以看出,国内外的平均水平差距在缩小,11月差距在10分左右。国内大模型竞争格局国内大模型综合表现-SuperCLUE创业公司(9)vs大厂(10)通过SuperCLUE测评结果发现,国内大模型的第一梯队有了更多新的模型加入。头部模型如文心一言4.0、通义千问2.0引领国内大模型的研发进度,部分高质量大模型紧追不舍,分别在闭源应用和开源生态中形成自己独特的优势。创业公司大厂•从国内TOP19大模型的数量来看,创业公司和大厂的占比几乎持平。大厂和创业公司平均成绩对比大厂平均69.42

小七姐:文心一言4.0、智谱清言、KimiChat 小样本测评

测评三家国产大模型,以同组提示词下ChatGPT 4.0生成的内容做对标参照[智谱清言](https://chatglm.cn/main/detail)[文心一言4.0](https://yiyan.baidu.com/)[Kimi Chat](https://kimi.moonshot.cn/chat/)[heading3]二、能力考量[content]复杂提示词理解和执行(结构化提示词)推理能力(CoT表现)文本生成能力(写作要求执行)提示词设计能力(让模型设计提示词)长文本归纳总结能力(论文阅读)[heading3]三、测评轮次[heading4]第一轮:复杂提示词理解和执行[content]1.任务一:Markdown+英文title提示词测试,1个任务4个模型(4次)2.任务二:Markdown+中文title提示词测试,1个任务4个模型(4次)3.任务三:中文title+自然段落提示词测试,1个任务4个模型(4次)[heading4]第二轮:推理能力(CoT表现)[content]逐步推理任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第三轮:文本生成能力(写作要求执行)[content]根据提示词生成文本任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第四轮:提示词设计能力(让模型设计提示词)[content]按提示词要求生成提示词,逐步推理任务,遍历3个不同类型任务+4个大模型(12次)[heading4]第五轮:长文本归纳总结能力(论文阅读)[content]按提供的长文本(上传或在线)进行归纳总结,逐步推理任务,遍历3个不同类型任务+4个大模型(12次)

2023年度中文大模型基准测评报告.pdf

值得关注的是,在本次测评中,国外的代表性大模型如GPT4的不同版本、Claude2、Llama2都很好的稳定性表现,值得国内大模型进一步分析研究。注:计算分值为模型的OPEN分与OPT分值的差值,用以观察模型在主观题和客观题上的不同表现。开源竞争格局开源现状开源模型对比国外代表模型1.国内开源模型现状总体上国内开源模型表现较好,成绩最好的开源模型在中文的某些场景或任务上接近GPT 4,其中Qwe n 72B-Cha t和Yi-34B-Cha t总分上已经超过GPT3.5,Baichuan2-13B-Chat也有接近GPT3.5的表现。2.不同大小(参数量)效果差异总体上大版本(如34B)的模型优于中小版本(13B、6B)的开源模型,更大的版本(如72B)的模型表现要更好。开源模型的发展也从最开始的6B,到13B,到现在更大的34B、72B的开源模型。3.谁在主导开源虽然也有少量大厂(阿里云)参与,但众多的创业公司是开源模型的主力,如智谱AI、百川智能、零一万物和元象科技。第4部分SuperCLUE2.0升级:行业及专项测评基准SuperCLUE2.0升级:行业及专项大模型测评基准

Others are asking
国产ai中,哪个可以把平面产品图处理成3d产品视频
以下是一些国产 AI 可以将平面产品图处理成 3D 产品视频的相关信息: 即梦:在平面设计稿转 3D 这一环节,可以在即梦图片生成界面中导入参考图,参考选项为参考轮廓边缘,生图模型选择图片 2.0,输入包含角色、细节描述、场景、风格材质等的提示词,生成图片,经过多次生成并选择高清放大。 但需要注意的是,不同的 AI 在处理效果和适用场景上可能会有所差异,您可以根据具体需求进行选择和尝试。
2025-03-25
国产的ai工具有哪些
以下是一些国产的 AI 工具: 图像类: 可灵:由快手团队开发,可生成高质量的图像和视频,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁,用户友好度高,目前免费,每天签到获取灵感值即可,但在某些方面存在局限性。 思维导图类: GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内的思维导图+AIGC 工具,能利用 AI 生成思维导图。 AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路,生成文章大纲。 TreeMind:输入需求即可由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括头脑风暴功能。 其他类: 传音智库:公司内部的 AI 平台,功能类似于 Poe,仅内网可访问,可用 kimi 替代。 Kimichat:https://kimi.moonshot.cn/ 秘塔 AI:https://metaso.cn/
2025-03-18
国产编码类AI
以下是一些国产的编码类 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,提高编程效率。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,具备行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型,可提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研基础大模型微调。 7. Codeium:由 AI 驱动的编程助手工具,通过提供代码建议等帮助软件开发人员提高效率和准确性。 此外,字节最新发布的 AI 编程工具 Trae 的 Windows 版也已发布,具有以下特点: 1. 全中文界面,跨平台支持,包括 Windows 和 MacOS 系统,操作界面简洁直观,易于上手。 2. 内置 Claude3.5 和 GPT4o 两大顶尖 AI 模型,完全免费且不限使用次数。 3. 零门槛智能开发,不懂编程也能通过中文对话让 AI 生成所需代码,并自动识别和解决代码错误。 字节的 Trae 目前处于公测阶段,完全免费。它同时支持豆包 1.5 Pro 和 Deepseek R1、V3 等模型。虽然在处理复杂业务时可能不如 Cursor,但为不懂技术的人提供了新选择,有望实现一人搞定业务、产品、设计、开发、运维等全流程。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-03-16
能够生成AI视频的免费国产软件有哪些?
以下是一些能够生成 AI 视频的免费国产软件: 1. Hidreamai:有免费额度,网址为 https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA:网址为 https://etna.7volcanoes.com/ 。这是一款由七火山科技开发的文生视频 AI 模型,能根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文和时空理解。 3. 可灵:网址为 https://klingai.kuaishou.com/ 。在 AI 视频生成领域表现出色,生成的视频质量高,生成速度快,对国内用户的可访问性强。支持文生视频、图生视频,提示词可使用中文,文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸。 4. Dreamina:处于国内内测阶段,有免费额度,网址为 https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频、视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以,文生视频支持多种控制和尺寸选择,默认生成 3s 的视频。
2025-03-08
国产AGI进程到哪了
2023 年之前,国内 AI 行业自认为和美国差距不大,但 ChatGPT 和 GPT4 的出现打破了这种认知,OpenAI 直接拉开了 2 年的技术差距。上半年国内坚信靠资金和卡能实现“大炼钢铁”,许多大厂和创业公司都想创造国产 AGI,但下半年发现不容易后纷纷转向“垂直应用”“商业化”,不再提 AGI。目前国内最领先的模型水平大概在准 ChatGPT3.5 的水平,和 GPT4 还有不小差距。百度的“文心 4.0”和即将发布的阿里的“通义千问”是国内较好的模型。 2024 年,国内多家厂商竞相推出新型推理模型,AI 与数学结合被视为实现 AGI 的关键。在这一年,AI 音频能力有长足进展,“全真 AI 颜值网红”出现,游戏 AI NPC 有里程碑式进展,AI 男/女朋友聊天基本成熟,实时生成的内容开始在社交媒体和广告中出现,AI Agent 有明确进展,可穿戴全天候 AI 硬件层出不穷,华为昇腾生态开始形成,国内推理芯片开始国产替代。但同时,AI 造成的一些问题也开始进入公众视野,AI 立法、伦理讨论仍大规模落后于技术进展。预计到 2025 2027 年,AI 相关技术还会有更多突破和发展,同时也会带来更多社会问题。
2025-03-06
国产的图片转视频的ai软件有哪些
以下是一些国产的图片转视频的 AI 软件: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 6. 可灵:由快手团队开发的 AI 应用,主要用于生成高质量的图像和视频,但价格相对较高。 7. 通义万相:在中文理解和处理方面表现出色,多种艺术和图像风格可选,操作界面简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值即可,但存在一定局限性,如某些类型的图像可能无法生成,处理非中文语言或国际化内容可能不够出色等。 更多的相关网站可以查看:https://www.waytoagi.com/category/38 。内容由 AI 大模型生成,请仔细甄别。
2025-03-05
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
介绍下即梦3.0的模型,为什么很多人说它好用
即梦 3.0 模型具有以下显著特点,这也是很多人认为它好用的原因: 1. 超真实: 质感提升:图片不再有磨皮过度的“假脸感”、“油腻感”,皮肤纹理、物品材质更自然。 情绪到位:人物表情不再僵硬或眼神空洞,能表现出更细腻、更有感染力的情绪,如开心、严肃、沮丧落泪等。 2. 超高清:默认能生成 1K 分辨率图片,还支持到 2K,画面更清晰,结构更准确。 3. 超专业: 影像大师:能更精准地理解电影类型(如恐怖片、爱情片、公路片)和镜头语言(如大特写、鱼眼镜头、俯视视角)。 动漫高手:动漫风格更多元(日漫、国漫、皮克斯风等),细节更丰富,色彩更统一,告别“抠图感”。 文字设计:不仅能准确生成大字、小字,还支持超多字体(细体、粗体、可爱体、毛笔字、涂鸦体等),排版更专业、更有设计感。 4. 超智能:能更好地理解自然语言描述,简单的指令也能出好图,支持“一句话 P 图”的自然语言编辑能力。 此外,即梦 3.0 在文字处理方面表现出色,不仅提升了大字的准确性、设计感和丰富度,还大幅解决了小字的稳定性问题。相比之下,在中文场景中,其他模型可能存在一些局限性,如 GPT4o 可能存在不识别某些中文字、难以生成特别设计感的字体等问题。而即梦 3.0 作为中文 AI 绘图模型,在中文的表现性上对国内用户更有用且友好。
2025-04-14
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14