Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文档转训练集

Answer

将文档转训练集通常可以按照以下步骤进行:

  1. 手动收集数据集:公司通常会雇用人员,为其提供标签说明,要求人们提出问题并写下答案。
  2. 注重质量:预训练阶段的文本可能来自互联网,数量大但质量较低。在第二阶段,应更看重质量而非数量,例如采用 100,000 个高质量的对话文档。
  3. 形成 SOP:初期可以先手动形成标准操作流程(SOP),然后逐步实现自动化,此过程初期可能需要大量人力。
Content generated by AI large model, please carefully verify (powered by aily)

References

文章:Andrej Karpathy 亲授:大语言模型入门

所以我们真的想要一个助理模型。而获取这些辅助模型的方式基本上是通过以下过程。我们基本上保持优化相同。所以训练是一样的。这只是下一个单词预测任务,但我们将更换正在训练的数据集。所以我们过去一直在尝试对互联网文档进行训练。我们现在将其替换为我们手动收集的数据集。我们收集它们的方式是使用很多人。因此,通常公司会雇用人员,并向他们提供标签说明,并要求人们提出问题,然后为他们写下答案。因此,这是一个基本上可以将其纳入您的训练集的单个示例的示例。有一个用户说,你能写一个关于垄断一词在经济学中的相关性的简短介绍吗?然后是助理。再次,该人填写理想的响应应该是什么,理想的响应以及它是如何指定的以及它应该是什么样子。这一切都来自我们为OpenAI或Anthropic等公司的人员和工程师提供的标签文档,或者其他任何会提供这些标签文档的公司。现在,预训练阶段涉及大量文本,但质量可能较低,因为这些文本仅来自互联网,有数百TB,而且质量并不高。但在第二阶段,我们更看重质量而不是数量。所以我们的文档可能会少很多,例如100,000,但现在所有这些文档都是对话,它们应该是非常高质量的对话,从根本上讲,人们是根据标签说明创建它们的。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

[02:20:11](https://waytoagi.feishu.cn/minutes/obcnyb5s158h8yi8alo4ibvl?t=8411000)AI相关技术、应用及问题解答交流本章节主要围绕模型训练、知识库搭建等问题展开讨论。许键介绍了端点信息排查方法,推荐Llama factory微调框架,讲解不同数据集下载渠道。还对比了蒸馏数据与RAG的效果、Lora微调和全仓微调的区别等,解答了显卡使用、文档转数据集等问题,告知知识库链接和作业提交方式。

智能纪要:02-26 | DeepSeek部署+蒸馏 2025年2月26日

关于模型训练与平台服务的介绍模型复现与微调:1:1复现没问题,理解细节并自行制作需基础知识。提供手把手教程、数据集等可1:1复现,微调在特定领域可降低幻觉,参数量不变但权重变化。训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是一种以用导学的学习方法。模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。平台服务介绍:阿里云提供多种解决方案,百炼是提供多种模型服务的Maas平台,派平台是提供云服务的PaaS平台,二者在定位、服务内容和核心差异上有所不同。关于模型训练与数据集相关问题的探讨数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。多模态训练:多模态有自身标注方式,如视频拉框标注。参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。本地微调框架:可使用llama factory等框架,需搭建并部署。开源数据下载:可在GitHub、hugging face、Mo Model Scope等平台获取。数据集转化:将文档资料转成数据集可先手动形成SOP,再逐步自动化,初期需大量人力。

Others are asking
国内好用的文档排版AI工具
以下是国内一些好用的文档排版 AI 工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版方面广泛使用,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。 此外,还有一些与文档相关的 AI 工具,如文章润色工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,优化文章语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
自动翻译英文文档
以下是关于您提出的“自动翻译英文文档”的相关内容: 一个基于 Python 的网页截图工具具有自动翻译英文内容为中文的功能。 在 Cursor 编辑器中,可直接在 Cursor Chat 里提出将中文版博客翻译成英文的要求,它会给出英文版本的文章,还能自动对比中英文文档并高亮差别,方便对英文进行直观修改,最终完成翻译。
2025-04-11
AI文本工具操作文档
以下是为您整理的一些 AI 文本工具的操作文档: AIGC 论文检测网站 1. 功能:提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 2. GPTZero 功能:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。 使用方法:上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale 功能:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线检测工具中,系统会分析并提供结果。 【TecCreative】帮助手册 1. 创意工具箱 AI 字幕 智能识别视频语言并生成对应字幕,满足海外多国投放场景需求。 操作指引:点击上传视频——开始生成——字幕解析完成——下载 SRT 字幕。注意:支持 MP4 文件类型,大小上限为 50M。 文生图 仅需输入文本描述,即可一键生成图片素材,海量创意灵感信手拈来! 操作指引:输入文本描述(关键词或场景描述等)——选择模型(注意 FLUX 模型不可商用)——开始生成——下载。 AI 翻译 支持多语种文本翻译,翻译结果实时准确,助力海外投放无语言障碍! 操作指引:输入原始文本——选择翻译的目标语言——开始生成。 TikTok 风格数字人 适配 TikTok 媒体平台的数字人形象上线,100+数字人模板可供选择,助力 TikTok 营销素材生产无难度! 操作指引:输入口播文案——选择数字人角色——点击开始生成。视频默认输出语言和输入文案语言保持一致,默认尺寸为 9:16 竖版。 多场景数字人口播配音 支持生成不同场景下(室内、户外、站姿、坐姿等)的数字人口播视频,一键满足多场景投放需求! 操作指引:输入口播文案——选择数字人角色和场景——选择输出类型——点击开始生成。视频默认输出语言和输入文案语言保持一致。 工具教程:AI 漫画 Anifusion 网址:https://anifusion.ai/ ,twitter 账号:https://x.com/anifusion_ai 功能: AI 文本生成漫画:用户输入描述性提示,AI 会根据文本生成相应的漫画页面或面板。 直观的布局工具:提供预设模板,用户也可自定义漫画布局,设计独特的面板结构。 强大的画布编辑器:在浏览器中直接优化和完善 AI 生成的艺术作品,调整角色姿势、面部细节等。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型,实现不同的艺术风格和效果。 商业使用权:用户对在平台上创作的所有作品拥有完整的商业使用权,可自由用于商业目的。 使用案例: 独立漫画创作:有抱负的漫画艺术家无需高级绘画技能即可将他们的故事变为现实。 快速原型设计:专业艺术家可以在详细插图之前快速可视化故事概念和布局。 教育内容:教师和教育工作者可以为课程和演示创建引人入胜的视觉内容。 营销材料:企业可以制作动漫风格的促销漫画或用于活动的分镜脚本。 粉丝艺术和同人志:粉丝可以基于他们最喜欢的动漫和漫画系列创作衍生作品。 优点: 非艺术家也可轻松进行漫画创作。 基于浏览器的全方位解决方案,无需安装额外软件。 快速迭代和原型设计能力。 创作的全部商业权利。 缺点:(未提及)
2025-04-11
图片文字转文档
图片文字转文档可以通过以下方式实现: coze 插件中的 OCR 插件: 插件名称:OCR 插件分类:实用工具 API 参数:Image2text,图片的 url 地址必填 用途:包括文档数字化、数据录入、图像检索、自动翻译、文字提取、自动化流程、历史文献数字化等。例如将纸质文档转换为可编辑的电子文档,自动识别表单、票据等中的信息,通过识别图像中的文字进行搜索和分类,识别文字后进行翻译,从图像中提取有用的文字信息,集成到其他系统中实现自动化处理,保护和传承文化遗产。 插件的使用技巧:暂未提及。 调用指令:暂未提及。 PailidoAI 拍立得(开源代码): 逻辑:用户上传图片后,大模型根据所选场景生成相关的文字描述或解说文本。 核心:包括图片内容识别,大模型需要准确识别图片中的物体、场景、文字等信息;高质量文本生成,根据图片生成的文字不仅需要准确,还需符合专业领域的要求,保证文字的逻辑性、清晰性与可读性。 场景应用: 产品文档生成(电商/零售):企业可以利用该功能将商品的图片(如电器、服饰、化妆品等)上传到系统后,自动生成商品的详细描述、规格和卖点总结,提高电商平台和零售商的商品上架效率,减少人工编写文案的工作量。 社交媒体内容生成(品牌营销):企业可使用图片转文本功能,帮助生成社交媒体平台的营销文案。通过上传产品展示图片或品牌活动图片,模型可自动生成具有吸引力的宣传文案,直接用于社交媒体发布,提高营销效率。 法律文件自动生成(法律行业):法律行业可以使用图片转文本技术,自动提取合同、证据材料等图片中的文本信息,生成法律文件摘要,辅助律师快速进行案件分析。
2025-04-11
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
学习路径文档
以下是为您提供的新手学习 AI 的路径文档: 首先,了解 AI 基本概念。建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 然后,开始 AI 学习之旅。在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 接着,选择感兴趣的模块深入学习。AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您掌握提示词的技巧,它上手容易且很有用。 之后,进行实践和尝试。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 最后,体验 AI 产品。与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,雪梅 May 的 AI 学习经验也值得参考。May 发现自己的学习路径是:迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。特别是学习 coze 的路径:输入→模仿→自发创造,这是她真实实践下来之后发现的学习规律。May 还提到,虽然费曼学习法告诉我们,学习最好的方式是教会别人,但在一开始学习 AI 时,自学和输入为主也是可行的。回想起来,如果能量更足、更有勇气,可以更早地开始输出倒逼输入。不过不要为难自己,只要迈开脚步,就是进步。
2025-04-09
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09