Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有关Deepseek的知识内容

Answer

以下是关于 DeepSeek 的相关知识:

  • 媒体报道和网络文章方面:
    • 微博上热搜,主流媒体全报道。
    • 众多作者发表了关于 DeepSeek 的文章,涵盖基础认知、提示词破解、进阶思考等类型,相关链接包括:
      • 通往 AGI 之路:关于 DeepSeek 的所有事情【知识库持续更新中】,https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA
      • 数字生命卡兹克:DeepSeek 的提示词技巧,就是没有技巧,https://zhuanlan.zhihu.com/p/20544736305 (错误)
      • 宝玉:教你如何破解 DeepSeek R1 系统提示词,https://mp.weixin.qq.com/s/vAp2w-I5ozTw-7R6jreLMw
      • 橘子汽水铺:中国开源,震撼世界:DeepSeek R1 的变革、启示与展望,https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw
      • 橘子汽水铺:自学成才之路,DeepSeek R1 论文解读,https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg
      • 新智元:史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束,https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg
      • 一支烟花 AI:用流程图对比 DeepSeek-R1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义,https://mp.weixin.qq.com/s/mdGtOcg1Ru-QOEBn31KhxQ
      • 腾讯科技:一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈,https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA
      • 张小珺腾讯科技:一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景,https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw
  • 在 AI 编程与炼金术:Build on Trae 中:
Content generated by AI large model, please carefully verify (powered by aily)

References

详解:DeepSeek深度推理+联网搜索 目前断档第一

微博上热搜,主流媒体全报道|作者|文章|类型|链接||-|-|-|-||通往AGI之路|关于DeepSeek的所有事情【知识库持续更新中】|基础认知|https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA||数字生命卡兹克|DeepSeek的提示词技巧,就是没有技巧。|基础认知|https://zhuanlan.zhihu.com/p/20544736305<br>错误||宝玉|教你如何<br>破解DeepSeek R1系统提示词|提示词破解|https://mp.weixin.qq.com/s/vAp2w-I5ozTw-7R6jreLMw||橘子汽水铺|中国开源,震撼世界:DeepSeek R1的变革、启示与展望|基础认知|https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw||橘子汽水铺|自学成才之路,DeepSeek R1论文解读|基础认知|https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg||新智元|史上首次,DeepSeek登顶中美AppStore!NYU教授:全球「AI霸权」之争已结束|基础认知|https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg||一支烟花AI|用流程图对比DeepSeek-R1,OpenAI O1,Claude说明强化学习在AI大模型训练、推理的创新和意义|基础认知|https://mp.weixin.qq.com/s/mdGtOcg1Ru-QOEBn31KhxQ||腾讯科技|一文读懂|DeepSeek新模型大揭秘,为何它能震动全球AI圈|基础认知|https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA||张小珺腾讯科技|一场关于DeepSeek的高质量闭门会:比技术更重要的是愿景|进阶思考|https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw|

详解:DeepSeek深度推理+联网搜索 目前断档第一

微博上热搜,主流媒体全报道|作者|文章|类型|链接||-|-|-|-||通往AGI之路|关于DeepSeek的所有事情【知识库持续更新中】|基础认知|https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA||数字生命卡兹克|DeepSeek的提示词技巧,就是没有技巧。|基础认知|https://zhuanlan.zhihu.com/p/20544736305<br>错误||宝玉|教你如何<br>破解DeepSeek R1系统提示词|提示词破解|https://mp.weixin.qq.com/s/vAp2w-I5ozTw-7R6jreLMw||橘子汽水铺|中国开源,震撼世界:DeepSeek R1的变革、启示与展望|基础认知|https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw||橘子汽水铺|自学成才之路,DeepSeek R1论文解读|基础认知|https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg||新智元|史上首次,DeepSeek登顶中美AppStore!NYU教授:全球「AI霸权」之争已结束|基础认知|https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg||一支烟花AI|用流程图对比DeepSeek-R1,OpenAI O1,Claude说明强化学习在AI大模型训练、推理的创新和意义|基础认知|https://mp.weixin.qq.com/s/mdGtOcg1Ru-QOEBn31KhxQ||腾讯科技|一文读懂|DeepSeek新模型大揭秘,为何它能震动全球AI圈|基础认知|https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA||张小珺腾讯科技|一场关于DeepSeek的高质量闭门会:比技术更重要的是愿景|进阶思考|https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw|

AI编程与炼金术:Build on Trae

蓝色文字跳转到文档对应位置)(不断更新)|章节_[三.使用DeepSeek R1给老外起中文名](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-DyEMdmCPOo98S6xbPfNcsuEOnuh)|知识点_[Node.JS安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PVnndBSV5oWOukx38tKcw2CPnub)|[申请DeepSeek R1 API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-TrXednqLAoH3VLxrUiYc1Pb9nhf)|[网页接入DeepSeek API](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UK5xdzhiaoo9RkxHR5bcs30pnV8)||-|-|-|-||[一.Trae的介绍/安装/疑难杂症](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R4GvdgOzeoC9mOxd1hScuql6nVY)|[Python安装](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Kcojdhid9oWJPjxAvEOczRt0nkg)||||[二.图片字幕生成器](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Yev6dqzNmolizDxG2PWcKj8Pn8y)|[用多模态复刻产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-PHwVdl7gCoZEehxUmiUcDeO8nde)||||[四.DeepSeek R1驱动的Life Coach](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-AyjYdKtFhobv6Zxrq71cYJubnug)|[使用AI Rules](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MBCsdTfLzoRnE9xQm3PcWgdFnEf)|[使用Git进行版本管理](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-S86bdFV1XoE66LxBqVhcqdYFnze)|[Github+Vercel进行云端部署](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-GgVmdqPMqoilxFxONuCcnbNpn2g)||[五.DeepSeek驱动的网页金句卡片生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-ZDQHd6QnqoH7SEx3UXwchSOEndc)|[使用Chat完善产品需求(PRD)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Q21mdyyRIoKZfdxT7rZcwD5lnwd)|[开发浏览器插件](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-Mgsvd3OnZousC0x3m3fcqRBanhd)|[Chrome插件logo自动生成](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-J4dcdT2IAoJUXhx2UKKcElR0n6g)||[六.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-MbTBdqIKBowgXExFCLqcQ0KTn5c)|[创建带有AI能力的飞书多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-R94pdLmyio0NCpxXUGzcJIMonTe)|[用网页呈现多维表格里的内容](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-KMaCd5GQKopqChxO2KycXXG3n5c)|||[七.做一个你专属的好文推荐网站(DeepSeek R1+飞书多维表格)(下)](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UDIsdsmulox4LcxK2CdcwjGgny6)|[浏览器插件将信息一键插入多维表格](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-O1B2djb7voeVsUxJxLHcyyo6n3c)|[将复杂产品分拆成多个简单产品](https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZc#share-UOx6dg3aVoeaYpx7M6hcurwUnGc)||

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
我是一个实体店家,我怎么能利用AI产生内容进而帮助我在流量平台拓客
以下是一些利用 AI 为实体店在流量平台拓客的方法和思路: 1. 借助抖音平台:利用抖音对实体商家的流量扶持,购买 AI 抖音发广告的软件。这需要懂软件开发的技术人员,并且熟悉抖音。 2. 利用 AI 私域做客户培育/用户旅程:通过 AI 软件自动跟进和培育客户,需求是懂软件开发的技术人员且熟悉微信。 3. 打造特定领域的 AI 工具:比如针对法律、健康、财务、教育、销售、HR 等领域,开发如“AI 合同助手”“AI 健康管家”“AI 课程生成器”“AI 销售助理”等垂类工具。 4. 作为引流者:把 AI 工具做成“公众号插件”“小程序入口”或“微信机器人”进行推广,获取分成。 5. 参考优秀作品:如商业综合体 AI 伴侣、客流诊断师、跨境商品不求人、公私域全流程内容规划师、公众号 10W+爆文工厂、营销内容文案合规检查、提示词定制神器、Nicole 咖啡门店分析师、3C 软文文案撰写、网购评论助手、万能 AI 营销助手、贴心平替推荐精灵、产品一键生成一篇高质量的知乎种草文、One thing AI 目标达成教练、润物等,从中获取灵感和思路。
2025-04-15
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
mcp 的内容
MCP(模型上下文协议)是一种创新的开放协议,由 Anthropic 公司在 2024 年 11 月推出并开源。 其主要特点和功能包括: 统一了交互标准,是链接所有 AI 应用与工具的桥梁,兼容所有 AI 应用。 具有三大功能:工具(Tools),底层使用 Function call 实现,与 OpenAI 格式兼容;资源(Resources),为 AI 提供参考信息;提示词(Prompts),预设对话模板。 主要接口路径包括获取工具列表、调用工具、获取资源列表、读取资源内容、获取提示词列表、获取提示词内容等。 转换步骤包括客户端向 MCP 服务器请求工具列表,将 MCP 工具定义转换为 Function call 格式,发送 Function Call 定义给 LLM,接收 LLM 生成的 Function call,将 Function call 转为 MCP 工具调用,发送工具调用结果给 LLM。 MCP 就像一个“转接头”或“通用插座”,其核心作用是统一不同外部服务,通过标准化接口与 AI 模型对接。它与传统 API 的关键区别在于: 单一协议:MCP 像一个统一接口,只要一次整合,就能连接多个服务。 动态发现:AI 模型能自动识别并使用可用的工具,不用提前写死每个接口。 双向通信:MCP 支持类似 WebSockets 的实时双向通信,模型不仅能查询数据,还能主动触发操作。 MCP 最早由 Anthropic 公司开发,目的是帮助 AI 模型(如 Claude)更容易地连接工具和数据源,现在已成为一个开放协议,被越来越多的企业和开发者采用,逐渐成为 AI 与工具互动的新标准。 官方文档:https://modelcontextprotocol.io/
2025-04-13
知识库中的LangChain和LangGraph的内容有哪些 ?
以下是关于 LangChain 和 LangGraph 的相关内容: LangChain: LangChain 是一个由 Harrison Chase 开发的开源 Python 库,旨在支持使用大型语言模型(LLM)和外部资源(如数据源或语言处理系统)开发应用程序。 它提供了标准的接口,与其他工具集成,并为常见应用程序提供端到端链。 设计主张集中在模块化组件上,这些组件提供用于使用 LLM 的行为抽象,并为每个抽象提供实现的集合,从而允许开发人员构造新链或实现现成的链。 LangChain 和 RAG 的关系: LangChain 是一个用于构建高级语言模型应用程序的框架,提供了实现 RAG 所必需的工具和组件。 RAG 即检索增强生成,是一种结合了检索(检索外部知识库中相关信息)和生成(利用 LLM 生成文本)的技术。 LangChain 作为框架,与 RAG 的关系包括:是框架与技术的关系,允许通过模块化组件构建 RAG 应用程序,简化开发过程,提高性能,支持构建复杂的 RAG 应用。 关于大模型 RAG 应用中的 LangChain: 有从产品视角出发的分享,包括项目背景、初步体验和评测结果等。 预计会分成 3 篇分享,分别是 LangChain 框架初体验、调优思路分享、如何测评。
2025-04-12