Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

分布式预训练数据并行

Answer

分布式预训练中的数据并行是使用广泛且加速性能良好的并行方法。各个数据切片能完全解耦,只需在每个 mini-batch 结束时进行梯度的 all-reduce。数据并行分为中心化方式(如 pytorch 里的 DataParallel)和无中心化方式(如 pytorch 里的 DistributedDataParallel)。这两种方式最大的区别在于 gradient 和 reduce 计算过程。DataParallel 需在 forward 之后把所有输出 gather 到 0 号卡上,计算完 loss 之后再 scatter 到各个设备上,然后做 backward 独立计算 gradient,最后搜集 gradient 到 0 号卡,forward 和 backward 间需插入一次通信。DistributedDataParallel 则是每张卡独立做 forward 和 backward,然后对各卡的 gradient 做 all-reduce,forward 和 backward 间无需通信。此外,ZeRO 的出发点是优化数据并行中的显存占用,因为在数据并行中,每个 device 上都有完整的权重、梯度和优化器状态信息,较为冗余。

Content generated by AI large model, please carefully verify (powered by aily)

References

(7)LLM分布式训练面面观

数据并行(Data Parallel)是使用最为广泛的并行方法,加速性能非常好,原因是各个数据切片可以做到完全解耦,只需要在最后每个mini-batch结束的时候做一下梯度的all-reduce既可。数据并行可以分为中心化方式的和无中心化方式的,对应于pytorch里面的DataParallel和DistributedDataParallel这两种方式最大的区别是gradient和reduce计算过程DataParallel是要在forward之后把所有输出gather到0号卡上,计算完loss之后再scatter到各个设备上,然后做backward独立计算gradient,最后搜集gradient到0号卡。因此需要在forward和backward间插入一次通信DistributedDataParallel是每张卡独立的做forward和backward,然后对各卡的gradient做all-reduce。因此forward和backward间无需通信

(7)LLM分布式训练面面观

ZeRO的出发点是希望优化数据并行里显存占用。因为在数据并行里面,每个device上都有完整的权重信息,梯度信息和优化器状态信息,这个其实是比较冗余的。

Others are asking
分布式预训练里的流水线并行
分布式预训练中的流水线并行是一种在模型参数量太大一张卡不能完全放下时采用的切分方法。具体而言,沿着模型的拓扑序将其切分成 p 段,每段为一个 stage。将大小为 N 的 minibatch 进一步切分为 m 个大小为 M 的 microbatch(N = m·M),这些 microbatch 依次进入上述 p 个 stage。 在流水线并行切分后,每个 stage 的耗时会发生变化。假设 1 指出:算力为 1 的节点,处理完整模型的 1 个 microbatch,前向和反向耗时分别是 t_f 和 t_b。基于此有推论 1:算力为 1/p 的节点,处理完整模型的 1 个 microbatch,前向和反向耗时分别是 p·t_f 和 p·t_b;推论 2:算力为 1 的节点,处理 1/p 模型的 1 个 microbatch,前向和反向耗时分别是 t_f/p 和 t_b/p;推论 3:算力为 1/p 的节点,处理 1/p 模型的 1 个 microbatch,前向和反向耗时分别是 t_f 和 t_b。 从耗时情况来看,理论上界是显存无限大,不需要 pipeline 并行,一把梭直接对 minibatch 的样本做前向和反向,耗时正比于样本数量,b_best 耗时为 t_best = m·,可见耗时是理论上界的 p 倍,存在大量计算资源闲置空载,硬件利率用很低。 最后小结,3D 并行包括数据并行。DP 计算和通信效率友好,但权重显存不友好;PP 要求 minibatch 里 batch size 足够大以掩盖流水线带来的 overhead,batch size 过大则会增大激活显存占用;TP 权重显存友好,但计算和通信效率不友好,通信量要求大。ZeRO 针对数据并行显存占用大的问题提出优化,Alpa 借鉴 AI 编译器思路对 3D 并行建模并用自动化搜索方式得到并行策略。
2025-03-14
分布式预训练模型并行
分布式预训练模型并行主要包括以下内容: 张量并行:当模型参数增大,除流水线并行外,还可用张量并行缓解,即以前的模型并行。以矩阵乘为例,对权重矩阵 B 有按列切分和按行切分两种方案。按列切分,A 不变,每一列独立计算后结果 concat 在一起;按行切分,A 对应列切分,两部分独立计算后结果 sum 在一起。 大模型发展历程:2017 年发布的 Attention Is All You Need 论文开启了相关研究。之后有多种预训练模型,如 2018 年 Google 提出的 BERT,创新性地双向预训练并行获取上下文语义信息和使用掩码语言建模;2018 年 OpenAI 提出的 GPT,开创仅用自回归语言建模作为预训练目标;2021 年 Meta 提出的首个开源模型 LLAMA,为构建更大规模、更通用的语言模型提供方法与工具。 分布式训练的其他方面: 分布式通信原语包括点对点通信和集合通信,集合通信包含多种方式。 3D 并行包括数据并行,各自有优势和问题。 ZeRO 针对数据并行显存占用大的问题提出优化,Alpa 借鉴 AI 编译器思路对 3D 并行建模并用自动化搜索方式得到并行策略。 如果想了解更多关于 transformer 在 NLP/多模态/AIGC 的算法知识、分布式训练知识,以及如何在 TVM 上做 PTQ 量化和部署,可以关注作者 aaronxic。
2025-03-12
分布式预训练
分布式预训练是指在训练模型时采用的一种方法。 在训练 GPT 时,模型以完全随机的权重开始,随着训练时间的推移,通过从分布中抽样并持续反馈,逐渐学会关于单词、空格和逗号等的知识,预测也越来越一致。观察训练时,可通过损失函数随时间的变化来评估。经过预训练,模型在语言建模中学会强大的通用表示,能有效对任意下游任务进行微调。 此外,还有一些关于初始化权重的灵活方法,如利用非监督式训练方式逐个训练神经层。例如,以受限玻尔兹曼机器(RBM)开始,通过对比发散进行训练,生成隐藏值并模拟训练另一个 RBM,重复此过程形成多层,如有分类需求可添加隐藏单元并微调权重,这种非监督式与监督式的组合也称为半监督式学习。 深度信念网络(DBNs)在标准化 MNIST 字符识别数据库中有出色表现,超越普通神经网络。Yoshua Bengio 等提出深层网络冗余式逐层训练,认为深度机器学习方法在复杂问题上比浅显方法更有效。关于非监督式预训练,利用自动代码取代 RBM 也是一种看法,其关键在于有足够多的显示层,能学习优良的高层数据显示,与传统手动设计特征提取步骤不同。Hinton 与 Bengio 的工作证明了深层神经网络能被训练好的假设是正确的。
2025-03-12
deepseek 分布式如何部署
DeepSeek 的分布式部署情况如下: 腾讯云(自建服务器):提供全版本,采用多机分布式部署,节点数量为 2 个,单节点配置为 HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):提供 DeepSeekR1 和 DeepSeekV3 版本,API 调用 DeepSeek 系列模型限时免费。即日至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:提供“deepseekr1:1.5b”、“deepseekr1:7b”、“deepseekr1:32b”版本,价格为 1.89 元/小时起,采用服务器部署的方式。 Gitee AI:提供全版本,R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 此外,还可以通过以下步骤实现 DeepSeek 联网版的部署: 1. 拥有扣子专业版账号,如果是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型,访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 。打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体,点击创建,先完成一个智能体的创建。
2025-02-20
deepseek 分布式部署
以下是关于 DeepSeek 分布式部署的相关信息: 云计算厂商提供的 DeepSeek 版本及特点: 腾讯云(自建服务器):全版本,多机分布式部署,节点数量 2 个,单节点配置为 HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):DeepSeekR1、DeepSeekV3,API 调用 DeepSeek 系列模型限时免费,即日起至 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受限时免费服务,单账号限制接口并发上限为 5,之后模型价格将恢复原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,价格 1.89/小时起,服务器部署方式。 gitee ai:全版本,R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 价格方面: 腾讯云(调用 API):即日起至 20250208 24:00 享受折扣价,20250209 00:00 恢复原价。输入:¥2¥1/M Tokens,输出:¥8¥2/M Tokens。当前有优惠活动,包括邀请好友赚 2000 万 Tokens,注册即送 2000 万 Tokens。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时,模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):全版本,免费额度:10000000/10000000,通过 API 调用。 华为昇腾社区:全版本,部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2,服务器调用 Docker 下载部署权重资源,非 API 调用模式。
2025-02-20
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11