Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前国内的AI工具栏有哪些,他们各自的优势用途是什么?

Answer

以下是一些国内的 AI 工具栏及其优势用途:

  • 墨刀 AI:设计工具,4 月访问量 179 万,相对 3 月变化 -0.016。
  • 无限画:图像生成工具,4 月访问量 144 万,相对 3 月变化 0.029。
  • autoDL 云服务租用:Agent 工具,4 月访问量 135 万,相对 3 月变化 0.239。
  • 百度 Chat:AI ChatBots 工具,4 月访问量 120 万,相对 3 月变化 -0.008。
  • 360AI 搜索(没接 GA):搜索工具,4 月访问量 120 万,相对 3 月变化 3。
  • AI-bot ai 工具集:导航网站,4 月访问量 116 万,相对 3 月变化 -0.128。
  • 创客贴 AI:设计工具,4 月访问量 111 万,相对 3 月变化 -0.224。
  • MasterGo:设计工具,4 月访问量 105 万,相对 3 月变化 -0.234。
  • 美图设计室:图像编辑工具,4 月访问量 101 万,相对 3 月变化 -0.073。
  • 魔搭社区-阿里达摩院:AI 训练模型,4 月访问量 98.5 万,相对 3 月变化 -0.121。
  • 即时 AI 设计:设计工具,4 月访问量 89.9 万,相对 3 月变化 -0.022。
  • Boardmix 博思 AI 白板:PPT 工具,4 月访问量 89.5 万,相对 3 月变化 0.129。
  • 百度飞桨 AI Studio:AI 学习工具,4 月访问量 88.9 万,相对 3 月变化 0.197。

图像类产品:

  • 可灵:由快手团队开发,用于生成高质量的图像和视频,图像质量高,但价格相对较高,重度用户年费可达几千元,轻度用户有每日免费点数和较便宜的包月选项。
  • 通义万相:在中文理解和处理方面表现出色,可选择多种艺术和图像风格,操作界面简洁直观,用户友好度高,且目前免费,每天签到获取灵感值即可,但在某些方面存在局限性,如某些类型图像因监管要求无法生成,处理非中文语言或国际化内容可能不够出色,处理多元文化内容时可能存在偏差。
Content generated by AI large model, please carefully verify (powered by aily)

References

国内总榜 Top80

|排行|产品名|分类aiwatch.ai|4月访问量(万Visit)|相对3月变化||-|-|-|-|-||15|墨刀AI|设计工具|179|-0.016||16|无限画|图像生成|144|0.029||17|autoDL云服务租用|Agent|135|0.239||18|百度Chat|AI ChatBots|120|-0.008||19|360AI搜索(没接GA)|搜索|120|3||20|AI-bot ai工具集|导航网站|116|-0.128||21|创客贴AI|设计工具|111|-0.224||22|MasterGo|设计工具|105|-0.234||23|美图设计室|图像编辑|101|-0.073||24|魔搭社区-阿里达摩院|AI训练模型|98.5|-0.121||25|即时AI设计|设计工具|89.9|-0.022||26|Boardmix博思AI白板|PPT|89.5|0.129||27|百度飞桨AI Studio|AI学习|88.9|0.197||28|字节扣子||84.4|-0.253||29|提示工程指南|Prompts|81.5|-0.291||30|toolsdar|导航网站|81.1|0.066|

给小白的AI产品推荐

在图像AI领域,我们见证了一场引人注目的变革。不久前,国外产品还是这个舞台上的独角戏,风靡全球。国内产品似乎还在后台默默追赶,努力缩小差距。今天,我们看到的是一幅截然不同的画面。国内的图像AI产品不再甘居人后,而是以惊人的速度赶超,甚至在某些方面开始引领潮流。所以谈到图像类AI产品的时候就有国内的产品可以讲一讲了。[heading2]3.1国内[heading3]3.1.1可灵[content]首先介绍的是"可灵",这是一款由快手团队开发的AI应用。可灵主要用于生成高质量的图像和视频。它的一大特点是生成的图像质量非常高。可灵最初采用内测邀请制,但现在已经向所有用户开放使用。然而,可灵的价格相对较高。与其他AI应用相比,它的费用要贵一些。对于重度用户,最高档的年费可能达到几千元人民币,如果平均到每个月,使用成本在400到600元人民币之间。但如果临时使用或轻度使用的话,仍然有每日免费点数和60多元单月的最便宜包月选项,对轻度用户来说还是值得一试的。[heading3]3.1.2通义万相[content]通义万相作为国产AI工具,它在中文理解和处理方面表现出色,这一特点使其在国内市场具有独特优势。用户可以从多种艺术风格和图像风格中进行选择,满足不同创作需求。生成的图像质量较高,细节丰富,能够满足大多数用户的期望。操作界面设计简洁直观,用户友好度高,降低了使用门槛。作为阿里生态系统的一部分,该工具可以与阿里其他产品和服务无缝整合,为用户提供更全面的解决方案。重点是现在免费,每天签到获取灵感值就可以。然而,这个应用也存在一些局限性。为了符合国内监管要求,某些类型的图像可能无法生成,这在一定程度上限制了创作自由度。在处理非中文语言或国际化内容方面,它可能不如一些国际AI图像生成工具那样出色。由于模型训练数据可能主要基于中文环境,在处理多元文化内容时可能存在偏差。

国内总榜 Top80

|排行|产品名|分类aiwatch.ai|6月访问量(万Visit)|相对5月变化||-|-|-|-|-||31|autoDL云服务租用||124|-0.108||32|AI-bot ai工具集|导航网站|122|0.112||33|同花顺问财|金融|120|-0.188||34|魔搭社区-阿里达摩院|AI训练模型|107|0.103||35|MasterGo|设计工具|100|-0.087||36|即时AI设计|设计工具|100|-0.126||37|百度Chat|AI ChatBots|92|-0.105||38|创客贴AI|设计工具|90|-0.082||39|即梦AI(剪映)|其他视频生成|79.6|3.766||40|可灵AI(快手)|其他视频生成|79|-1||41|360快剪辑|视频编辑|76.3|0.13||42|Dify.ai|Agent|75|-0.023||43|Vast(算力)||72|-0.073||44|提示工程指南|Prompts|70|-0.222||45|站酷海洛(付费)|资源|70|-0.026|

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
deepseek 能在办公的什么用途上
DeepSeek 在办公方面有以下用途: 1. 能够快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 可用于制作可视化图表、PPT 大纲及设计海报等。 4. 通过智能体框架实现人机高效协作。 5. 在体制内办公方面有速通指南,提供快速上手的完整教程。 此外,讲座中还提到 DeepSeek 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。
2025-03-22
ai的具体用途在哪些方面
人工智能(AI)的用途广泛,涵盖以下多个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗,分析患者数据制定个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,识别并阻止欺诈行为。 信用评估,帮助金融机构做出贷款决策。 投资分析,分析市场数据辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐可能感兴趣的产品。 改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 优化供应链,提高效率降低成本。 控制工业机器人提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,快速送达偏远地区。 6. 其他领域: 教育领域,提供个性化学习体验。 农业领域,分析农田数据提高农作物产量和质量。 娱乐领域,开发虚拟现实和增强现实体验。 能源领域,优化能源使用提高效率。 总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更深远的影响。
2025-03-13
ai绘画常用且可以作出商业用途的设计工具都哪些
以下是一些 AI 绘画常用且可用于商业用途的设计工具: 1. Midjourney:能够帮助设计师快速创建草图和概念图,实现自动化创意设计、颜色匹配、插图绘制等,在更多工作场景中带来降本增效的效果。 2. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具。 3. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 4. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型。 6. 主流 CAD 软件中的生成设计工具,如 Autodesk 系列、SolidWorks 等,可根据输入自动产生多种设计方案。 7. Recraft AI:是 AI 平面设计工具,用户可生成和编辑插画、海报、产品周边等,提供多种样式的可选风格,允许对生成的图像进行商业使用。
2025-02-08
AI用途分类
AI 的用途分类广泛,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,帮助做出贷款决策。 投资分析,辅助投资者决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐感兴趣产品。 搜索和个性化,改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 在汽车行业,AI 的应用案例包括: 1. 自动驾驶技术,自主导航和驾驶。 2. 车辆安全系统,预防事故。 3. 个性化用户体验,根据偏好和习惯调整车辆设置。 4. 预测性维护,预测潜在故障和维护需求。 5. 生产自动化,提高生产效率和质量控制。 6. 销售和市场分析,理解客户需求制定策略和优化定价。 7. 电动化和能源管理,优化电池使用和充电策略。 8. 共享出行服务,优化路线规划、调度车辆和定价策略。 9. 语音助手和车载娱乐,通过语音控制车辆功能和获取信息。 10. 车辆远程监控和诊断,实时了解车辆状况并提供支持。
2025-01-14
Gamma的用途介绍
Gamma 有以下几种常见用途: 1. 在图像处理中,Gamma 可用于改变图像的 Gamma 值,从而调整图像的亮度和对比度。节点选项说明中,gamma 表示图像的 Gamma 值。 2. Gamma 也是一个在线演示文稿制作平台。它利用人工智能技术帮助用户快速创建和设计演示文稿。用户通过简单的文本输入生成幻灯片,其 AI 系统会根据内容自动提供布局建议和设计元素。该平台支持多种多媒体格式嵌入,如 GIF 和视频,提供多种预设主题和自定义选项,简化演示文稿创建过程,让非设计专业人士也能轻松制作出具有专业外观的演示文稿,使用户节省设计时间,专注于内容表达和创意发挥。 此外,在开源大模型领域,谷歌发布的 Gemma 模型中也涉及到相关技术细节。Gemma 是一个轻量级的 SOTA 开放模型系列,在语言理解、推理和安全方面表现强劲。谷歌发布了 20 亿参数和 70 亿参数两个版本,并提供了预训练以及针对对话、指令遵循、有用性和安全性微调的 checkpoint。不同尺寸满足不同的计算限制、应用程序和开发人员要求。Gemma 在 18 个基于文本的任务中的 11 个上优于相似参数规模的开放模型。
2024-10-14
本地大模型有啥用途
本地大模型具有多种用途,以下为您详细介绍: 1. 在图像生成方面,如 SDXL 的大模型,分为 base、refiner 和配套的 VAE 模型。base 用于文生图操作,refiner 用于细化生成的图片以获得更丰富的细节,VAE 用于调节图片的画面效果和色彩。使用时需将模型放入对应文件夹,在秋叶启动器中将 webUI 版本升级到 1.5 以上,然后在文生图中填写提示词和常规参数进行生成。 2. 资讯问答方面,如 Langchain + Ollama + RSSHub 实现 RAG。Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于多种操作系统,提供模型库,支持自定义模型,有 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。 3. 对话和回答问题方面,通过 Open WebUI 使用大模型。一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。若要求不高,可实现和本地大模型的对话功能。ChatGPT 访问速度快是因其服务器配置高,回答效果好是因其训练参数多、数据更优及训练算法更好。若想更灵活掌握知识库可进一步操作。
2024-09-21
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
deepseek的优势是什么?
DeepSeek 的优势包括以下方面: 1. 性能与成本:展示出媲美领先 AI 产品的性能,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 2. 文字能力:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。 3. 数学能力:经过优化,表现不错。 4. 模型特点: 推理型大模型:通过理解用户的真实需求和场景来提供答案,不需要用户提供详细步骤指令。 更懂人话:能够理解用户用“人话”表达的需求,无需特定提示词模板。 深度思考:回答问题时能够进行深度思考,非简单罗列信息。 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 开源与创新:开源了多模态模型 JanusPro,在参数上领先,具备多种能力,通过优化训练策略、海量数据和大规模参数实现更强智能表现,统一 Transformer 架构,提供多种规模,全面开源,支持商用,部署使用便捷,Benchmark 表现优异。
2025-03-24
微调大模型的优势与运用的功能场景是什么?微调具体步骤是?
微调大模型具有以下优势和运用的功能场景: 优势: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 功能场景:适用于需要在特定领域(如法律、医学等)获得更优表现的情况。 微调大模型的具体步骤如下: 从参数规模的角度,大模型的微调分成两条技术路线:全量微调(FFT)和参数高效微调(PEFT)。全量微调是对全量的模型参数进行全量的训练,PEFT 则只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续大模型的训练过程,通过调整模型本身的参数来提高性能。 您可以参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2025-03-23
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
部署大模型的一体机有什么优势
部署大模型的一体机具有以下优势: 1. 语言翻译方面: 语境理解与适配:能够通过深度的上下文分析,理解语言背后的真正含义,避免词不达意和语境脱节的问题,尤其在处理隐喻、习语或文化特征的文本时,能更精准地捕捉并传达原文意图。 流畅自然的翻译输出:通过对大量自然语言数据的学习,能够生成更加流畅、自然且地道的翻译,接近母语水平,保持原文的语言风格和情感色彩。 灵活性与多场景适应:强大的适应性,能够根据不同的翻译场景灵活调整策略,在多场景翻译中表现得更具灵活性和精准度。 文化适配与行业专用翻译:能够深入理解语言背后的文化内涵,避免因文化差异导致的误解或偏差,在专业领域能提供更加专业且符合行业标准的翻译结果。 2. 模型部署方面: 内存优化:由于大模型参数众多,内存需求大,在实际部署时会进行模型压缩,使用内存占用更小的数据类型,如 16 位的浮点数,可直接减少内存使用。 解决传输瓶颈:在训练大模型中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点。 3. 硬件架构方面: 存算一体架构:运行几百亿个参数的大模型,存算一体架构是最佳选择,可避免数据搬运。 4. 知识结合方面: 大模型在通用知识方面表现出色,但对专业领域知识了解有限。将领域知识结合进大模型的方法包括重新训练、微调、RAG、关键词工程和加长 Context 等。目前在学术界,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。
2025-03-19