Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一个小白ai,我想学习有关ai写作方面的知识。

Answer

以下是关于 AI 写作方面的知识:

  1. 陈财猫的观点:
    • AI+内容创作是现阶段最好的赛道,具有完美的产品-模型匹配和产品-市场匹配,且天花板高。
    • AI 写作的实践成果包括营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。
    • 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。
    • 用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力等;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。
    • 对 AI 创作的看法是 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。
  2. 利用 AI 写课题的步骤和建议:
    • 确定课题主题,明确研究兴趣和目标,选择具有研究价值和创新性的主题。
    • 收集背景资料,使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关研究文献和资料。
    • 分析和总结信息,利用 AI 文本分析工具提取关键信息和主要观点。
    • 生成大纲,使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。
    • 撰写文献综述,利用 AI 工具确保内容的准确性和完整性。
    • 构建方法论,根据研究需求利用 AI 建议的方法和技术设计研究方法。
    • 数据分析,如果课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。
    • 撰写和编辑,利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。
    • 生成参考文献,使用 AI 文献管理工具生成正确的参考文献格式。
    • 审阅和修改,利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。
    • 提交前的检查,使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,应保持批判性思维,并确保研究的质量和学术诚信。
  3. 吴恩达关于生成式 AI 的观点:
    • 生成式 AI 由监督学习技术搭建,2010 - 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。生成文本会使用到大语言模型,其通过不断预测下一个词语来生成新的文本内容。
    • 大语言模型是思考的朋友,运用大语言模型写故事、修改文本非常有用,但大语言模型会编造故事产生错误信息,需要鉴别信息准确。
    • 人工智能是一种通用技术,有大量运用空间,如基于网络界面应用和基于软件程序应用。
    • 使用 LLM 来写作,集思广益、头脑风暴将非常有用。使用网页版的聊天信息时,提供更多的信息。翻译也可以使用 LLM,翻译效果可能比机器翻译更好,但网络文本较少时效果不太好,可以让 LLM 将内容翻译成为海盗英语进行测试翻译准确度。
Content generated by AI large model, please carefully verify (powered by aily)

References

陈财猫:如何用 AI 写出比人更好的文字?

本文讨论了如何用AI写出比人更好的文字,作者陈财猫从自身经历出发,分享了在AI内容创作领域的思考和实践。关键要点包括:AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品-模型匹配和产品-市场匹配,且天花板高。AI写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版agent。定义好文字:好文字能引起人的生理共鸣与情绪,AI因预训练数据量大能学会引发共鸣,从而写出好文字。用AI写出好文字的方法:选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过prompt中的描述与词语映射到预训练数据中的特定类型文本,往prompt里塞例子。对AI创作的看法:AI创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌AI是因其未改变多数人生活,或自身是受害者。作者期望AI能力进一步提升,改变每个人的生活。

问:如何利用AI写课题

利用AI技术来辅助写作课题可以提高效率并激发新的创意。以下是一些步骤和建议:1.确定课题主题:明确你的研究兴趣和目标,选择一个具有研究价值和创新性的主题。2.收集背景资料:使用AI工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。3.分析和总结信息:利用AI文本分析工具来分析收集到的资料,提取关键信息和主要观点。4.生成大纲:使用AI写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。5.撰写文献综述:利用AI工具来帮助撰写文献综述部分,确保内容的准确性和完整性。6.构建方法论:根据研究需求,利用AI建议的方法和技术来设计研究方法。7.数据分析:如果课题涉及数据收集和分析,可以使用AI数据分析工具来处理和解释数据。8.撰写和编辑:利用AI写作工具来撰写课题的各个部分,并进行语法和风格的检查。9.生成参考文献:使用AI文献管理工具来生成正确的参考文献格式。10.审阅和修改:利用AI审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。11.提交前的检查:最后,使用AI抄袭检测工具来确保课题的原创性,并进行最后的格式调整。请记住,AI工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用AI进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。内容由AI大模型生成,请仔细甄别。

学习笔记:Generative AI for Everyone吴恩达

在整体的人工智能领域中,监督学习用于标记事物,一直占据很大比例。现在生成式AI在近期快速崛起,但强化学习与无监督学习也是AI领域重要的一种工具。生成式AI由监督学习技术搭建。2010-2020年是大规模监督学习的十年,这为现代人工智能奠定了基础。生成文本会使用到大语言模型,生成的过程是,大语言模式使用监督学习不断预测下一个词语,比如,i like,它会不断预测like后的词语是什么,经过大量的数据,它可能后面带的是,beaty,或者,eating,而eating后又大概率预测会有food。这样不断地生成新的文本内容。(这需要千亿,甚至万亿级别的单词数据库)[heading4]大语言模型是思考的朋友[content]运用大语言模型,来写故事,修改本文,非常有用。网络搜索与LLM的区别是,网络搜索可以追寻信息来源,同时你可以使用LLM提供相关的建议与策略。但大语言模型很会编造故事,所以会产生错误信息,这需要鉴别信息准确。[heading4]人工智能是一种通用技术(可以应用的空间)[content]人工智能有大量运用空间。现在通过网址来交互的应用——基于网络界面应用,如下方左图又或者将LLM内置与更大的软件来进行自动化——基于软件程序应用,如下方右图[heading4]写作[content]使用LLM来写作,集思广益,头脑风暴将非常有用。使用网页版的聊天信息时,提供更多的信息。翻译也可以使用LLM,翻译效果可能比机器翻译更好。但网络文本较少时,效果也不太好。可以让LLM将内容翻译成为海盗英语进行测试翻译准确度。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
ai小白学习课程
对于 AI 小白的学习课程,建议如下: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 另外,如果让我推荐一门 AI 课,比如【野菩萨】的课程: 1. 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 2. 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 3. 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 4. SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 5. ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 6. ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 7. 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 免费课程机会:如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。 冠军奖励:4980 课程一份 亚军奖励:3980 课程一份 季军奖励:1980 课程一份 入围奖励:598 野神殿门票一张 扫码添加菩萨老师助理,了解更多课程信息。 对于纯小白,还可以参考以下: |分类|标题|文章链接|视频链接|适用人群|简要说明| ||||||| |通识篇|现有常见 AI 工具小白扫盲|(1 小时 32 分开始)|对 AI 都没太多概念的纯纯小白|给与 AI 之间有道墙、还在墙外的人简单介绍当前各种 AI 工具、0 成本最快速感受当下 AI 工具的力量| |通识篇|AI 常见名词、缩写解释|结合食用|
2025-04-15
作为一个小白,如何开始ai编程
以下是小白开始 AI 编程的步骤和相关建议: 直接上手: AI 编程就像一场 PUA 和提问大赛。 要分辨 Chat 和 Composer 两个模式。Chat 模式可与大模型对话,但常用的是 Composer 模式,它能即时反馈,直接创建文件、填写代码并询问您是否满意。 例如,在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,1 2 分钟后会生成相关文件。 生成文件后,可打开文件夹找到 index.html 双击查看本地运行效果。若环境报错双击打不开,可截图在 Composer 对话框询问解决方法。 思想准备: 对于小白来说,因为无知会充满勇气和忧虑。能从心理上面对“我或许能行”这件事,可能就解决了 AI 编程问题的一半。 后续探索: 作者将继续探索并更新相关文章,包括: 第一弹,一点小小的震撼——cursor 黑客松。 第二弹,文案工作者的福音——cursor 批量写 prompt、写文章。 第三弹,上一辈的崛起——cursor 的“向上”,给爹妈一场安利。 如果想要交流或了解更多,欢迎戳这里:
2025-04-14
如果是小白新手,理论应用到实践中最重要的是什么
对于小白新手,将理论应用到实践中,以下几点最为重要: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,可找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎分享自己的实践成果。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,就像有人认为“只要知道它的原理和历史,自然而然就会知道它的底线和顶点在哪里”,但实践中的体验和尝试同样不可或缺。
2025-04-13
写作指令
以下是关于写作指令的相关内容: 拘灵遣将: 对文章中案例进行脱敏,替换人物姓名、时间和地点。 深化写作时,每次对话输出文章一个部分,各部分字数有规定。 敕代表告诫,明确工作中的禁忌事项和具体要求。 令包括初始化时的欢迎语,牢记符与敕的要求,先请求用户提供案例洞察报告和目标群体,用户提供并输入“依律奉行”后,先输出纲要和写作方案。 熊猫 Jay:万字解读 ChatGPT 提示词最佳实践: 最佳实践 1 是编写清晰的指令。 策略包括在查询中包含详细信息以获得更相关答案,要求模型扮演某个角色,使用分隔符清晰表示输入不同部分,指定完成任务所需步骤,提供示例,指定输出期望长度,提供参考文本。 策略 1 适用于新手,难度为 1 星,价值在于提供更多详细信息可获得更准确具体答案,减少模型猜测和误解,提高交互效率和满意度。 策略 2 适用于新手,难度为 1 星,通过指定角色使模型回答更具特色和针对性,提升输出质量。 OpenAI 官方提示工程指南: 撰写清晰的指令,模型无法读心,可根据输出情况要求调整。 技巧包括在查询中添加详细信息以获得更准确答案,请求模型扮演特定角色,使用分隔符清晰区分输入不同部分,明确指出完成任务需要的步骤,提供实例作为参考,明确指定希望输出的长度。
2025-04-14
如何运用ai写作一篇行政管理专业本科毕业论文
以下是运用 AI 写作一篇行政管理专业本科毕业论文的一些参考方法: 首先,您可以向 LLM 提供关于您的背景信息和具体指令,例如:“根据以下关于我的信息,写一篇行政管理专业本科毕业论文:”。但需要注意的是,利用 AI 写作论文并非是道德的使用方式,了解这种可能性的存在以及它已被部分学生使用这一情况很重要。这超出了简单介绍的范围,关于 LLM 或整个生成式 AI 引入的所有可能的伦理、法律或道德问题,不在此详细讨论。另一方面,如果您是接收方,最好为您的组织准备好迎接各种 AI 生成的内容。幸运的是,对于此类情况,已经有检测 AI 生成内容的相关努力正在进行。
2025-04-14
有学术写作的ai提示词吗
以下是一些关于学术写作的 AI 提示词相关内容: 可以向 LLM 寻求写作建议,例如:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。” 对于“AI 写论文有前景吗”这一问题,可以使用 SPAH 框架优化为:“考虑到人工智能在内容创作方面的进步,请问 AI 在学术论文写作领域的应用前景如何,特别是其潜在能力、面临的限制和未来发展挑战是什么?” 要认识到 AI 存在“不稳定性”,不能期待设计一个完美的提示词就得到完美答案,给到 AI 的提示词应是一个相对完善的“谈话方案”,真正的成果需要在对话中产生。
2025-04-13
推荐一个免费的论文写作ai
以下为您推荐一些免费的论文写作相关的 AI 工具和服务: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 6. AIGC 论文检测网站: :提供免费的 AI 内容检测工具,识别文本是否由 AI 生成。使用时将文本粘贴到在线工具中点击检测按钮获取分析结果。 GPTZero:专门检测 GPT3 生成内容,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告。 Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中获取分析结果。 7. 免费的 AI 理解论文服务: https://www.aminer.cn/:如果是计算机领域尤其是人工智能话题,可订阅感兴趣的话题,网站提供免费的 AI 理解论文服务,每篇论文处理一次全站可看,多数论文有免费 PDF 下载链接。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
AI写作
以下是关于 AI 写作的相关内容: 一、陈财猫的观点 1. AI+内容创作是现阶段最好的赛道,基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果包括营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法包括选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力;克服平庸,平衡“控制”与“松绑”;显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法是 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、3 月 10 日 AI 资讯中的相关内容 Muse 是专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作,可免费试用。 三、AI 写作变现指南 1. 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等;选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段:学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能;构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建:确定服务内容,如提供论文、报告、文案等直接写作服务;制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广:在淘宝等电商平台上开设店铺,展示并销售写作服务;建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力;通过社交媒体和线下活动进行品牌和社群建设;与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展:持续关注 AI 技术进展,提升服务质量和效率;根据市场需求,拓展新的服务和产品;收集客户反馈,不断优化和改进服务。 这份指导强调了 AI 技术在写作服务中的应用,以及如何通过团队建设、质量控制、客户反馈和市场拓展来提升整个业务的竞争力和盈利能力。同时,也提出了与艺术、自媒体等其他领域的合作可能性,以开发衍生项目,进一步扩大业务范围和市场份额。
2025-04-11
AI写作
以下是关于 AI 写作的相关内容: 一、陈财猫的观点 作者陈财猫从自身经历出发,分享了以下关于用 AI 写出比人更好的文字的思考和实践: 1. AI+内容创作是现阶段最好的赛道:基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,认为该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果:业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 定义好文字:好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法: 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 克服平庸,平衡“控制”与“松绑”。 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法:AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂;有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、3 月 10 日 AI 资讯汇总中的相关内容 1. 【AI 写作】 Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改,创意头脑风暴以及同时基于画布形式的故事创作。可免费试用。 三、AI 写作变现指南 1. 项目启动: 确定目标客户群体,如大学生、职场人士、自媒体从业者等。 选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段: 学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能。 构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建: 确定服务内容,如提供论文、报告、文案等直接写作服务。 制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广: 在淘宝等电商平台上开设店铺,展示并销售写作服务。 建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力。 通过社交媒体和线下活动进行品牌和社群建设。 与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展: 持续关注 AI 技术进展,提升服务质量和效率。 根据市场需求,拓展新的服务和产品。 收集客户反馈,不断优化和改进服务。 这份指导强调了 AI 技术在写作服务中的应用,以及如何通过团队建设、质量控制、客户反馈和市场拓展来提升整个业务的竞争力和盈利能力。同时,也提出了与艺术、自媒体等其他领域的合作可能性,以开发衍生项目,进一步扩大业务范围和市场份额。
2025-04-11
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14