Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

comfyui连接blender的教程

Answer

以下是 ComfyUI 连接 Blender 的教程:

首先,安装下载网盘里的两个文件。先安装稳定版 Blender(这是主程序,解压即用。如果已经有 Blender 的朋友可以跳过这一步)。有 Steam 平台的可以去 Steam 上下载 Blender,软件会自动更新,很方便。

接下来打开软件,安装无限圣杯的插件。进入“偏好设置”——插件——选择“安装”,找到“无限圣杯节点工具”里面的压缩包,不用解压,直接选择压缩包进行安装。安装好之后,打上勾,就可以开启无限圣杯了。

接着看插件下方的 ComfyUI 路径这一栏,将它更改为我们电脑中的 ComfyUI 的地址。然后选择一个适合自己的显存模式:8G 以上选高显存;6G 选中显存;4G 选低显存。安装完成,重启即可。

无限圣杯的使用:打开软件,编辑器类型中会出现“ComfyUI Node”。点击进入 ComfyUI 界面,先点击上方的“新建”按钮,然后展开右侧的 N 面板可以看到无限圣杯的界面。打开节点树的列表,可以看到文生图、图生图以及 ControlNet 等常见工作流。选择文生图,打开会发现还有一些更细化的预设工作流选项。再看看 ControlNet 中的工作流预设。

还有一些根据插件整理的工作流,比如随便选择一个“文生图”中的“基础+自定 VAE”,选好之后,点击“替换节点树”。界面中会出现已经连接好的工作流节点(如果没看到,就按一下 home 键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有在 webUI 中熟悉的参数,而且全都是中文面板。打开模型节点,可以看到 webUI 中的模型全部都在。这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒是否启用 ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片。点击这里就可以打开后台,看到出图时间。

Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

那么今天,我们就来看一下如何在blender中实现comfyUI的使用,以及无限圣杯有什么优势。#安装下载网盘里的两个文件,先安装稳定版blender,这个是主程序,解压即用,如果已经有blender的朋友可以跳过这一步。另外说一句,有steam平台的可以去steam上下载blender,我就是在这里装的,软件会自动更新,很方便。接下来打开软件,安装无限圣杯的插件。进入“偏好设置”——插件——选择“安装”。找到“无限圣杯节点工具”里面的压缩包,不用解压,直接选择压缩包进行安装。安装好之后,打上勾,就可以开启无限圣杯了。接着看插件下方的ComfyUI路径这一栏,将它更改为我们电脑中的comfyUI的地址,我的是“E:\ComfyUI_windows_portable\ComfyUI”。然后选择一个适合自己的显存模式:8G以上都是高显存;6G选中显存;4G选低显存。安装完成,重启就可以了。#无限圣杯的使用打开软件,编辑器类型中就出现了“ComfyUI Node”。点击进入comfyUI界面,先点击上方的“新建”按钮,然后展开右侧的N面板可以看到无限圣杯的界面了。打开节点树的列表,可以看到我们熟悉的文生图、图生图以及controlnet等常见工作流。我们选择文生图,打开发现还有一些更细化的预设工作流选项。再看看controlnet中的工作流预设。

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-09-05 19:00原文网址:https://mp.weixin.qq.com/s/vdm9L_xsZc8d3ZZj7CrLdw在上一期介绍了ComfyUI的本地部署之后,很多小伙伴发现界面还是英文的,这样使用起来属实不太友好。而且,每一个流程都要自己搭建,操作起来很麻烦。但没关系,这个问题是可以解决的。了解过Blender的朋友一定都知道B站UP主“只剩一瓶辣椒酱”,他在blender界就是和秋叶大佬一样的存在,属于祖师级别的人物。最近,他和幻之境开发小组联合开发的一款基于STABLE DIFFUISON ComfyUI核心的Blender AI插件,将他们整合到了一起,名字叫做——无限圣杯。鉴于有的朋友还不知道blender是什么,我先在这里大致普及一下,因为我这个公众号也写了一年多的blender教程了,对这个软件还是比较熟悉的。它和SD一样,是一款免费开源的三维制作软件,曾经作为C4D的平替被大家所熟知。而一款开源软件,那就意味着它极高的自由度,可以将很多的功能包容进来,blender也正是以一款软件就能建立完整工作流而立足的。ComfyUI的界面很简单,主要是节点操作,而在一款三维软件当中,节点工作流可是家常便饭了。材质节点编辑器、纹理节点编辑器、几何节点编辑器等等,都是经常会用到的,所以Blender和ComfyUI从工作流程上就是天然适配。想不到研究了blender这么久,终于等到了AI绘画和blender结合的一天,不得不感叹一句:少年啊,这盛世如你所愿!

【ComfyUI】Blender+Stable Diffusion!少年啊,这盛世如你所愿!(附中文汉化插件)

还有一些根据插件整理的工作流,可谓是相当丰富了。我们就先随便选择一个“文生图”中的“基础+自定VAE”吧。选好之后,点击“替换节点树”。界面中就出现了已经连接好的工作流节点(如果没看到,就按一下home键),包括大模型、clip、vae、正反提示词、尺寸,采样器等所有我们在webUI中都已经熟悉的参数,而且全都是中文面板。打开模型节点,可以看到我们webUI中的模型全部都在。这个地方不知道怎么操作的朋友,可以看我的上一篇[【ComfyUI】本地部署ComfyUI上手指南,我就喜欢连连看](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487895&idx=1&sn=aa21eede16dfe4bde7e0e93e353f7357&chksm=c2514753f526ce451175f654a93f48b526fc6de3e3b1564b218db41f7e3f99df5a84bb887043&scene=21#wechat_redirect)。我们这次先不更改参数,点击“运行节点树”,直接生成。此时会提醒你是否启用ComfyUI,点击确定即可。等待一会,就能在最后一个节点预览图中看到生成的图片了。点击这里就可以打开后台,看到出图时间,用时为2.15s。

Others are asking
AI与autocad ,blender结合应用
以下是关于 AI 与 AutoCAD、Blender 结合应用的相关信息: 与 Blender 结合应用: 通过联网搜索向 AI 提供最新信息,常见的 AI 助手采用此方式获取实时信息。 可通过 API 向 AI 提供自有系统数据,解决行业内部或自有系统信息接入问题。 MCP 协议为 AI 大模型与数据源集成提供统一标准,实现更可持续的架构。 可以通过一句话提示,让 Claude 自动化打开 Blender 将 2D 图片转为 3D 建模,还能基于此搭建互动网页。 有网友展示“Rodin AI”在 Blender 中通过 Blender MCP 进行自动 3D 建模的过程。 幻之境开发小组联合开发了基于 STABLE DIFFUSION ComfyUI 核心的 Blender AI 插件“无限圣杯”。 Blender 是免费开源的三维制作软件,与 ComfyUI 在工作流程上天然适配。 目前提供的内容中未涉及 AI 与 AutoCAD 结合应用的相关信息。
2025-04-01
生成blender 3d文件的ai
目前,已经有许多AI工具可以用于生成Blender 3D文件。这些工具可以帮助您快速创建各种3D模型、场景和动画,而无需手动建模。以下是一些流行的AI生成Blender 3D文件的工具: Dream by WOMBO: Dream by WOMBO是一个基于文本到图像的AI平台,可以根据您的文字描述生成3D模型。您可以输入任何您想生成的3D模型的描述,Dream by WOMBO会将它转换为一个Blender 3D文件。 Artbreeder: Artbreeder是一个AI平台,可以用于创建和混合各种创意内容,包括3D模型。您可以使用Artbreeder提供的现有模型,也可以上传自己的模型进行混合。Artbreeder会生成新的3D模型,您可以将其导出为Blender 3D文件。 GauGAN2: GauGAN2是NVIDIA开发的AI模型,可以将草图或照片转换为逼真的3D场景。您可以使用GauGAN2提供的工具绘制草图或上传照片,GauGAN2会将它转换为一个Blender 3D文件。 Stable Diffusion: Stable Diffusion是一个开源的AI文本到图像模型,可以根据您的文字描述生成3D模型。您可以使用Stable Diffusion提供的API或GUI来生成3D模型,并将它们导出为Blender 3D文件。 Midjourney: Midjourney是一个AI绘画平台,可以根据您的文字描述生成图像和3D模型。您可以输入任何您想生成的3D模型的描述,Midjourney会将它转换为一个Blender 3D文件。 这些只是一些流行的AI生成Blender 3D文件的工具。随着AI技术的不断发展,将会有越来越多的工具可以用于生成3D内容。 以下是一些使用AI生成Blender 3D文件的提示: 使用具体的关键词: 使用具体的关键词可以帮助AI工具生成更准确的3D模型。例如,如果您想生成一个猫的3D模型,您可以使用以下关键词: 猫 3D模型 毛茸茸的 四条腿 尾巴 使用参考图像: 您可以向AI工具提供参考图像,帮助它理解您的风格和要求。例如,如果您想生成一个类似于某只猫的3D模型,您可以向AI工具提供该猫的图片。 调整AI工具的参数: 许多AI工具都提供了各种参数,您可以调整这些参数来控制生成结果。例如,您可以调整模型的分辨率、细节程度和风格。 使用多个AI工具: 您可以使用多个AI工具来生成3D模型,然后将它们组合在一起。例如,您可以使用Dream by WOMBO生成一个猫的3D模型,然后使用Artbreeder将它与另一只猫的3D模型混合。 希望以上信息对您有所帮助。如果您还有其他问题,请随时提出。
2024-05-13
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
AI视频教程
以下是为您提供的 AI 视频教程相关内容: AI 让古画动起来的教程: 1. 对于简单的图,找原图直接写提示词即可。若碰到多人多活动的复杂图,需把长图分多个模块,比如将一张图分成 4 个模块。 2. 智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。若有水印,可以把图片向下拓展一部分,然后截掉。 3. 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 5. 用剪映把抽卡合格的视频放在去掉内容的背景图片,通过色度抠图调整去掉视频的背景。多个视频放在背景图片,一起动即可。 AI 视频相关的软件教程: 包括视频模型如 luma Dream Machine、可灵、MiniMax 海螺 AI、Sora、Vidu 等,工具教程如 Hedra,视频工具如 VIGGLE,以及应用教程如视频转绘、视频拆解等。相关链接如下: WaytoAGI X 剪映的 AI 创意视频征集令·第 1 期: 1. 征集内容:使用 AI 功能创作的创意视频成片,也可投稿 AI 创意视频的教程(教大家如何做一个 AI 创意视频)。AI 功能包括但不限于:AI 对口型、AI 改动作、AI 配音、克隆音色、AI 音乐、AI 特效、AI 图文成片、AI 剪视频等。不包括纯图片生成或纯视频生成的内容(特指用 AI 工具生成的图片、图生视频,但视频里没有添加 AI 功能)。 2. 创作工具:主要使用「剪映」平台工具创作,可多使用剪映平台的 AI 功能/新功能;部分 AI 效果若剪映无法实现,可使用其他软件创作。 3. 内容价值:视频需有消费价值,要有一定内容主题,有故事感、或者有梗、或者有核心观点表达,让用户有持续观看和点赞、收藏的欲望。缺少内容主题、过于简单、过于模板化的内容将不予通过。在抖音、小红书等平台点赞量高的内容,审核通过率大大提升! 4. 原创度:作品需要原创、极具创意和独特性,且符合当代年轻群体的审美和兴趣喜好,不可照搬、抄袭他人创意,一经发现将取消活动奖励,视情节严重情况回收灵感发布权限。 5. 作品延展度:作品有可模仿性,其他创作者看完后,可模仿学习或二创。比如:前期素材易获取,后期素材易剪辑或处理,让其他视频创作者有强烈的模仿欲望,且对自己模仿或二创视频有成就感和分享欲。 6. 作品时长:时长适中,最短不低于 15 秒,最长不建议超过 3 分钟。
2025-04-13
AI出设计图教程
以下是关于 AI 出设计图的教程: 使用 Midjourney 生成 UI 界面: 页面指令:指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”(登录页)、“Profile Page”(个人资料页)。 社交平台:关键词“landing page”可生成社交平台的登录页设计。 信息类:关键词“Profile Page”可生成人力资源类产品的个人资料页,包含照片、自我介绍、基本信息等内容。 Midjourney 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前要直接用于开发仍有距离。 使用 Claude 生成设计稿的技巧: 引用 Tailwind CSS 写组件样式,确保色彩、响应式和基础组件的美观度。 按照特定的四个技巧可让 Claude 设计出美观的界面或组件。 生成设计稿的方法:将生成的代码部署到线上,使用 html.to.design 这个 Figma 插件将网页转换为设计稿,但每天免费次数有限。 进阶技巧和关键词: 图片内容一般分为二维插画和三维立体两种表现形式。 主题描述:可描述场景、故事、元素、物体或人物细节等。描述场景中的人物时应独立描述,避免长串文字,否则 AI 可能识别不到。 设计风格:可通过找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。对于材质的描述,关键词的运用较为复杂,需要针对特定风格进行“咒语测试”。
2025-04-12
有没有连接cursor和firebase的MCP
以下是关于连接 Cursor 和 Firebase 的 MCP 的相关内容: 1. 搭建本地 MCP: 明确说明需要实现的功能。 从核心功能开始,跑通之后再叠加额外功能。 Claude 思考后写下代码,在命令行 cmd 里运行服务器 python 文件,转到项目文件目录下运行。 将服务器接入到 Cursor 里,打开 Cursor 右上角设置/MCP,点击添加,配置文件 mcp.json,输入代码以安装服务器或以开发者模式安装,配置好后按 ctrl + S 保存。 回到设置界面,查看是否连接成功,未成功可点击刷新。 提问测试是否成功调用 MCP 工具。 2. MCP 前置准备工作(保姆级教程): 配置 MCP 客户端软件任选一个客户端软件配置即可,大致分为四步: 填入大模型 API 密钥。 找到 MCP 配置界面。 填入 MCP Server 对应的 json 脚本。 使用 MCP 。 配置 Cherry Studio(推荐):使用 2025 年 4 月发布的 1.1.17 版本,配置大模型 API,填入之前准备好的 AiHubMix 的 API 密钥,配置 MCP 。 配置 Cursor(推荐):若 Cursor Pro 在免费试用期,配置大模型 API 这一步可以不做;若不在免费试用期,可氪金或填入之前准备好的 AiHubMix 的 API 密钥,配置 MCP Server,填入 MCP Server 的 json 并保存,回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具,使用 MCP 时 Ctrl + Shift + L 新建对话,将模式设置为 Agent 。 配置 Claude Desktop:用文本编辑器打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存,重启 Claude Desktop 并查看 MCP Server 连接状态。 3. 从 0 开始开发第一个 MCP 服务: Cursor 和 Windsurf 不断更新,MCP 开发教程也在进化。 适合想快速入门 MCP、对 AI 开发感兴趣但没编程基础、不想写代码但想做开发的人群。 预计动手时间仅需 15 分钟。 可以开发实现加法运算等功能的 MCP Server,通过 MCP 让 AI 使用查询实时天气、联网搜索最新信息、调用私人数据库等强大工具,还能分享提示词。
2025-04-10
GPT为什么连接不上网站
GPT 连接不上网站可能有以下原因: 1. 网络问题:由于网络限制或不稳定,导致在国内的使用率较小。 2. 安全风险:连接到其他系统(如邮箱或购物网站)可能带来更高的安全风险,从而影响连接。 如果在 GPT 上迭代完成的提示词,可以考虑适配国内的优秀大模型。目前只有 Plus 用户才可以使用 GPT,这在一定程度上限制了其使用范围。关于 GPT 的创建方式,包括以下步骤: 1. 点击 Explore。 2. 点击 Create a GPT 进入配置页面。 3. 进入自定义 GPT 配置界面。 4. 默认进入 Create 页面,选择 Configure 进入配置页面,其中有添加图像、Name、Instructions、Conversation starters、Knowledge、Capabilities、Actions 等栏位的详细设置。 5. 上传图片,如做个人 IP 建议上传个人 Logo。 6. 填写相关信息。 7. 填写完信息自动保存,开始试用。 8. 上传图片开始分析。 9. 经过多次测试,达到满意程度后,在右上角点击 Save 进行发布,发布时可选择 Only me(只有自己可以使用)、Only people with a link(通过分析的链接可以访问)、Public(所有人都可以访问,但需要开启个人名称以及绑定公共域名)。
2025-03-15
comfyui怎么一键连接节点
要在 ComfyUI 中一键连接节点,可以按照以下步骤进行操作: 1. 了解成对的节点:SetNode 可当成无线发射器,GetNode 可当成无线接收器。一个发射器可以对应多个接收器,但它是定向发射的,不会自动连接。 2. 添加节点的方式:推荐在普通节点上点击右键,找到“添加设置节点”和“添加获取节点”。需注意从输出拉出连线后的查找节点列表里找不到这两个节点。 3. 具体连接操作:将输出连接到“SetNode”节点上,并为其起一个好记的名字。在要连入的节点附近添加“GetNode”节点,选择刚刚起的名字,把这个节点和要输入的部分连接上即可。 此外,ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点等)、处理节点(如采样器节点、调度器节点等)、输出节点(如图像输出节点)和辅助节点(如批处理节点、图像变换节点等)。用户可以通过拖动节点之间的连接线来构建整个工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes。ComfyUI 的界面包括顶部工具栏(包含全局操作和工具)、左侧面板(用于显示节点库)和中央画布(主要工作区域)。
2025-03-13
我想开发铁路调车作业岗位的制动员、连接员和调车长的专业技能等级考级试题库。我应该利用何种AI资源来辅助我开发呢?
目前在开发铁路调车作业岗位相关的专业技能等级考级试题库方面,可利用的 AI 资源相对有限。但您可以考虑以下几种方式: 1. 利用自然语言处理模型,如 ChatGPT 等,辅助生成一些基础的题目框架和内容描述,然后您再根据实际需求进行修改和完善。 2. 借助一些智能写作工具,帮助您优化题目表述,提高题目质量。 3. 运用在线的知识图谱和数据库,获取与铁路调车作业相关的专业知识和标准,为试题库的内容提供准确依据。 需要注意的是,AI 生成的内容仅供参考,最终的试题库仍需要您依据专业标准和实际工作要求进行严格的审核和把关。
2025-03-05
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
comfyui无法连接服务器
ComfyUI 无法连接服务器可能有以下原因和解决办法: 1. 网络问题导致无法从 GitHub 下载资源: 可以使用国内镜像,参考文档中的说明。 直接从 GitHub 网页下载资源,然后放到对应的文件路径。 2. 终端连接不上 GitHub 可能是因为网络未做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把这个配置到默认的终端启动项里边:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890 。或者考虑使用第三方镜像站下载,如 TUNA()。 此外,安装 ComfyUI 还有以下电脑硬件要求: 1. 系统:Windows7 以上(不建议使用 XP 系统)。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2024-11-30