Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我需要的是学习目录,比如 基础--专项---实战等路径

Answer

以下是为您提供的 AI 学习目录:

基础部分

  • 根据电脑硬件和自身财力选择合适的开始方式,包括本地部署(M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(在线出图和云电脑),不建议一开始就配主机。
  • 熟练使用文生图、图生图,具备一定逻辑思考和推理能力。
  • 掌握数学基础(线性代数、概率论、优化理论等)和编程基础(Python、C++等)。

专项部分

  • 建炉,针对不同炼丹方式提供炼丹工具的安装教程。
  • 数据集预处理、模型训练以及模型调试及优化。
  • 自然语言处理:语言模型、文本分类、机器翻译等。
  • 计算机视觉:图像分类、目标检测、语义分割等。

实战部分

  • 通过真实业务场景的项目案例,如研报生成、旅游搭子、即拍即搜等积累实战经验。
  • 模型部署:模型优化、模型服务等。

请注意,以上内容仅供参考,您可以根据自身需求和实际情况进行调整和学习。

Content generated by AI large model, please carefully verify (powered by aily)

References

必学必看基础 ❗️

根据电脑的硬件情况和自身财力?选择合适的开始方式本地部署如果你的电脑是M芯片的Mac电脑(Intel芯片出图速度非常慢,因此不建议)或者2060Ti及以上显卡的Windows电脑,可以选择本地部署。强烈建议在配有N卡的Windows电脑上进行在线平台对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可配台电脑❗️非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对AI有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意[heading2]课程简述[content]先验经验需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白课程安排课程大约70-80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示[heading2]学习路径[content]必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分

【共学营特别场第二场】智谱BigModel开放平台工作流搭建

我们希望帮助用户从零开始,快速掌握智谱BigModel清流-智能体开发平台的搭建使用,缩短学习曲线,提升企业的智能化转型效率。1.整体可分为三大阶段,精心设计了由浅入深、循序渐进的学习路径,确保你能在最短时间内快速上手基于BigModel智谱清流的智能体应用开发。在产品概述,我们会阐述清流的产品定位和我们的独特优势,即解决企业在AI落地遇到的难题,实现满足投产要求的解决方案的落地。在产品功能详解中:基础篇,我们首先会介绍清流的核心概念与和基本操作:分别从智能体广场、画布编排调试、插件中心、知识库等关键模块入手。通过这一部分的学习,你将对清流建立全局的认知,能够使用关键节点搭建简单的AI应用。为后续的深入学习打下基础。进阶篇将带你探索清流的进阶功能和开发技巧。你将学会如何优化工作流性能、如何搭建复杂的业务逻辑、如何管理和部署AI智能体应用,等等。通过这一部分的学习,你将全面提升自己的智能体应用开发能力,能够独立完成实现更为复杂、可投产使用的AI企业级智能体应用。在产品实战,我们通过几个来自真实业务场景的项目案例,将清流的能力应用到落地场景中。从研报生成到旅游搭子,再到即拍即搜,通过最佳实践掌握清流的开发的精髓,为本企业积累AI项目的实战经验。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

1.数学基础:线性代数、概率论、优化理论等2.机器学习基础:监督学习、无监督学习、强化学习等3.深度学习:神经网络、卷积网络、递归网络、注意力机制等4.自然语言处理:语言模型、文本分类、机器翻译等5.计算机视觉:图像分类、目标检测、语义分割等6.前沿领域:大模型、多模态AI、自监督学习、小样本学习等7.科研实践:论文阅读、模型实现、实验设计等[heading3]偏向应用方向[content]1.编程基础:Python、C++等2.机器学习基础:监督学习、无监督学习等3.深度学习框架:TensorFlow、PyTorch等4.应用领域:自然语言处理、计算机视觉、推荐系统等5.数据处理:数据采集、清洗、特征工程等6.模型部署:模型优化、模型服务等7.行业实践:项目实战、案例分析等无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。内容由AI大模型生成,请仔细甄别。

Others are asking
RAG实战教程推荐
以下为您推荐一些 RAG 实战教程: 1. 【AI+知识库】商业化问答场景,让 AI 回复更准确,一篇专为所有“小白”讲透 RAG 的实例教程(上篇): 介绍了常见的错误场景,如回答不准确、报价错误、胡编乱造等,强调了优化 AI 准确回答的重要性,并引出 RAG 概念。 讲解了基础概念,包括优化幻觉问题和提高准确性需要了解从“问题输入”到“得到回复”的过程,并针对每个环节逐个调优。 阐述了检索原理,包括问题解析阶段通过嵌入模型将问题文本转化为向量,知识库检索阶段比较向量选择相关信息片段,信息整合阶段构建融合全面的信息文本,大模型生成回答阶段将整合后的信息转化为向量输入大语言模型生成回答。还通过实例进行了详细说明,如知识库检索部分的向量化、优化问题、向量检索、抽取内容块等,以及大模型对话部分。 2. 开发:LangChain 应用开发指南 不用向量也可以 RAG: 以餐饮生活助手为例展示了基于结构化数据来 RAG 的实战方法,包括给出用户提问和回复的示例,以及餐饮生活助手 RAG 的代码实战。 介绍了实现餐饮生活助手 RAG 的 Langchain 代码实战需要完成的步骤,如定义餐饮数据源,将餐饮数据集转化为 Langchain 可识别和操作的数据源并注册到 Langchain 中;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源、生成答案并输出给用户。
2025-04-01
RAG 开发实战
以下是关于 RAG 开发实战的详细内容: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成质量和准确性。其基本流程为:首先,用户给出输入,如问题或话题,RAG 从数据源中检索相关文本片段(称为上下文);然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),此输入通常包含提示,指导模型生成期望输出(如答案或摘要);最后,从大模型输出中提取或格式化所需信息返回给用户。 以餐饮生活助手为例进行 RAG 的 Langchain 代码实战,需完成以下步骤: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源(如数据库、文件、API 等),注册到 Langchain 中,并提供统一接口和方法,方便 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同 LLM 代理及其功能逻辑,并提供统一接口和方法,方便用户与 LLM 代理交互。
2025-03-20
AI产品经理实战学习
以下是为您提供的关于 AI 产品经理实战学习的相关内容: 北京分队中从事相关工作或有相关经验的人员包括: 枫 share:产品经理,熟悉 ChatGPT,写过 prompt,使用过 SD、MJ 但有待深入学习,用 PR、剪映剪辑过多个视频和播客音频,正在找 AI 方向的产品岗位,坐标海淀(北五环)。 行远:产品经理,熟悉 prompt,部署过大模型、绘图项目,使用 Midjourney、sd、pika、suno 等 AI 创作工具,期待学习和实战案例应用,坐标朝阳。 管子:数据科学家,熟悉 prompt 创作,midjourney,runway,正在学习 stable diffusion,期待学习、打磨作品,坐标朝阳(望京和国贸)。 猫先生:算法技术出身,2022 年开始持续关注并学习 AIGC 方向,部署过大模型、绘图、视频生成等项目,熟悉 pika、runway、svd、sd、gpt4、comfyui 等工具,坐标海淀。 Andy:技术出身,刚开始学习 AIGC,部署过大模型、SD 等,写过代码调用 API,熟悉使用 ChatGPT、Kimi、coze 等,关注 AI 在教育领域的应用,坐标通州。 AI 产品经理的个人划分(仅供娱乐和参考): 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有两个路径,一个是技术研究路径,一个是商业化研究路径。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用:有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求:懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI 产品经理要关注的还是场景、痛点、价值。 此外,阿里云 AI 实训营携手 WaytoAGI 讲师走进 GDC 全球开发者先锋大会,活动包括: 学练议程:2 月 21 日 09:30 12:30 通义灵码 0 基础应用开发,人人都是软件创作者;2 月 21 日 13:30 16:30 为你的 AI 应用装上眼睛;2 月 22 日 08:30 12:00 人工智能平台 PAI:DeepSeek 部署和应用实战。 分享嘉宾:张梦飞(词元映射 CEO,WaytoAGI Agent 核心创作者)、银海(AI 产品经理,WaytoAGI 社区共建者)、瑞雪(通义实验室科学家)、许键(AI 产品经理,WaytoAGI Agent 版主)。 实训福利:打卡有礼(现场分享打卡,领 AI 实训营定制周边)、学练有礼(现场提交作业,领阿里云精美好礼)。 活动地点:上海徐汇西岸艺术中心 B 馆(BW01)。感兴趣的学员可扫码参会。
2025-02-25
AI产品经理实战手册
以下是为您提供的关于 AI 产品经理的相关信息: 1. 2 月 7 日的《DeepSeek 爆火的当下:2025,人人都是顶尖 AI 产品经理实操指南》指出,过去一年“AI 在产品管理中的应用”成为热门话题,“所有产品经理都需要成为 AI 产品经理”的观点在各种场合反复出现,AI 正在重塑工作方式。 2. 《Claude 的 5 层 Prompt 体系:从 AI 用户到 AI 指挥官的进阶之路》中提到,将复杂需求拆解为原子化 Prompt 组件是掌握 5 层 Prompt 体系的关键,并通过跨国科技公司规划下一代智能家居系统的实际案例展示了应用方法,包括 User Requirement、System Prompt、Global Rule 等多个层面,还创建了多种风格用于不同场景。 3. 对于 AI 产品经理的划分,仅供娱乐和参考: 入门级:能通过开源网站或课程了解 AI 概念,使用并动手实践应用搭建。 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用工具手搓出 AI 应用验证想法。 落地应用级:有成功落地应用案例并产生商业化价值。同时指出,对 AI 产品经理要求懂得技术框架,对技术边界有认知,产品经理要关注场景、痛点、价值。还列举了一些落地案例。
2025-02-24
飞书多维表格DeepSeek实战
以下是关于飞书多维表格 DeepSeek 实战的相关信息: 共学课程安排: 【今晚 8 点】聊聊你怎么使用 DeepSeek!:共学大类为 AIagent,讲师为全体,飞书会议地址为,共学时间为 2025 年 2 月 6 日。 飞书多维表格 DeepSeek 实战:共学大类为多维表格字段捷径,讲师为王大仙,飞书会议地址为,共学时间为 2025 年 2 月 10 日。 关于 DeepSeek 的介绍: DP 模型的功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容,使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知,使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示。 Deepseek 文档可在 3 群和 4 群分享获取,也可在 v to a gi 的飞书知识库中搜索获取。介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。 相关社区动态: 2025 年 2 月 10 日,有《》DeepSeek R1 赏析分享会,专为非技术人群设计,介绍了技术亮点、未来展望及对流行谣言的澄清。 2025 年 2 月 10 日,有《》,讲述了 DeepSeek 的崛起原因、V3 模型特点及竞争策略。 2025 年 2 月 10 日,有《》,介绍了飞书多维表格与 DeepSeek R1 结合的使用方法和效果。
2025-02-12
飞书多维表格DeepSeek实战
以下是关于飞书多维表格 DeepSeek 实战的相关信息: 共学活动安排: 【今晚 8 点】聊聊你怎么使用 DeepSeek!:共学大类为 AIagent,讲师为全体,飞书会议地址为,共学时间为 2025 年 2 月 6 日。 飞书多维表格 DeepSeek 实战:共学内容为多维表格字段捷径,讲师为王大仙,飞书会议地址为,共学时间为 2025 年 2 月 10 日。 关于 DeepSeek 的介绍与使用: DP 模型的功能包括自然语言理解与分析、编程、绘图等,使用优势是能用更少的词让模型做更多事、思维发散、能给出创意思路和高级内容,但存在思维链长不易控制、可能输出错误内容等问题。审核方法可以用其他大模型来解读其给出的内容,使用时要有自己的思维雏形,使用场景包括阅读、育儿、写作、随意交流等。 Deepseek 文档可在 3 群和 4 群分享获取,也可在 v to a gi 的飞书知识库中搜索。介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 相关社区动态: 2025 年 2 月 10 日,《》DeepSeek R1 赏析分享会专为非技术人群设计,介绍了技术亮点、未来展望及谣言澄清。 2025 年 2 月 10 日,《》介绍了 DeepSeek 崛起的原因、V3 模型的特点及竞争策略。 2025 年 2 月 10 日,《》介绍了如何将飞书多维表格与 DeepSeek R1 结合提升工作效率,普通人无需编程知识也能轻松使用 AI。
2025-02-12
学习WaytoAGI的最佳路径是什么
学习 WaytoAGI 的最佳路径包括以下几个方面: 1. 了解最新的 AI 技术:WaytoAGI 像免费的“技术期刊”,能让您了解最新动态,还能教授实用技能,且开源免费。 2. 线上共学:通过线上共学方式,手把手教您应用 AI 技术,无论您是小白还是有一定基础,都能找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找对 AI 感兴趣的伙伴一起做事,WaytoAGI 是很好的平台。 使用 WaytoAGI 的方法: 1. 点开链接就能看:无需注册和花钱,直接点击链接:点击。 2. 想看啥就看啥:比如想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分,内容分类清晰。 3. 有问题还能问:看了还有不懂的,或者想跟别人交流,可以加入社群讨论。 此外,WaytoAGI 还有整活区,这里不是系统性学习的地方,而是一起做有趣事情的游乐场。在这里,您不用证明想法“有什么用”,可以尽情发挥对 AI 最天马行空的想象,鼓励把 AI 玩出新花样。
2025-04-10
学习路径文档
以下是为您提供的新手学习 AI 的路径文档: 首先,了解 AI 基本概念。建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 然后,开始 AI 学习之旅。在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 接着,选择感兴趣的模块深入学习。AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您掌握提示词的技巧,它上手容易且很有用。 之后,进行实践和尝试。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 最后,体验 AI 产品。与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,雪梅 May 的 AI 学习经验也值得参考。May 发现自己的学习路径是:迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。特别是学习 coze 的路径:输入→模仿→自发创造,这是她真实实践下来之后发现的学习规律。May 还提到,虽然费曼学习法告诉我们,学习最好的方式是教会别人,但在一开始学习 AI 时,自学和输入为主也是可行的。回想起来,如果能量更足、更有勇气,可以更早地开始输出倒逼输入。不过不要为难自己,只要迈开脚步,就是进步。
2025-04-09
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
提供一个全面的AI学习路径
以下是为您提供的全面的 AI 学习路径: 首先,了解 AI 的基础概念是至关重要的。这包括对机器学习、深度学习、自然语言处理等核心领域的基本认识。 在掌握基础概念后,深入学习数学知识,如线性代数、概率论、微积分等,这些是理解 AI 算法的基石。 接着,学习编程语言,如 Python,它在 AI 开发中被广泛应用。 然后,学习常见的机器学习算法,如决策树、聚类算法等,并通过实践项目加深理解。 对于深度学习,要掌握神经网络的原理和常见模型,如卷积神经网络、循环神经网络等。 同时,关注最新的 AI 行业资讯,了解前沿技术和应用案例。 参与相关的实践活动,如模型创作大赛等,将理论知识应用到实际中。 此外,利用丰富的学习资源,如文章、教程、工具推荐等,不断提升自己的能力。 “通往 AGI 之路”是一个致力于人工智能学习的中文知识库和社区平台,由开发者、学者和 AI 爱好者共同参与建设。它提供了系统全面的学习路径,涵盖从基础概念到实际应用的各个方面,包括丰富的学习资源、定期组织的活动等。您可以通过以下渠道获取更多信息: 网站: 知识库介绍说明:https://waytoagi.feishu.cn/wiki/BE57wlWV2iDkOvkbYIockX11nTC 社区业务:https://waytoagi.feishu.cn/wiki/PhZwwGR7jinzLVkqohOc7oofnzf 公众号:通往 AGI 之路 Bilibili:https://space.bilibili.com/259768893 小红书:https://www.xiaohongshu.com/user/profile/6457d2e4000000001f030dbe Twitter:https://twitter.com/WaytoAGI
2025-04-01
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
学习路径
以下是关于学习 AI 的不同方面的学习路径: LLM 开发: 1. 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,以及 BERT 的预训练和微调方法。掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用 LLM 预训练框架如 PyTorch、TensorFlow 等,以及微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习,结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 AI 技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 AI 应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 AI 基础入门: 1. 根据电脑的硬件情况和自身财力选择合适的开始方式,如本地部署(电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(分为在线出图和云电脑)或配台电脑(不建议一开始就配主机)。 2. 必学、必看内容是基础课,主要解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供不同的炼丹工具的安装教程;正式的内容部分分为数据集预处理、模型训练以及模型调试及优化三个部分。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-31
知识库目录在哪里
以下是关于知识库的相关信息: 1. 直播一期中包含知识库及社群介绍,直播回放链接为:https://www.bilibili.com/video/BV1QN411j719/ ,其中有知识库目录导览。 2. AGI 知识库是由开源 AI 社区创建,是一个旨在提供全面系统、易于理解的 AI 学习路径的知识库。 3. 【AI+知识库】商业化问答场景中,介绍了大语言模型、提示词和知识库的作用,如知识库相当于给“聪明”员工发放的工作手册。 您可以通过上述提到的直播回放、相关介绍等获取更详细准确的知识库目录信息。
2025-03-30
知识库目录
以下是为您整理的知识库目录: 1. 直播一期:知识库及 GPT 基础介绍 知识库及社群介绍 最新知识库精选同步 通往 AI 绘画之路(小红书),专注于 AI 绘画,分享优质设计 Prompt 知识库目录导览 2. Coze 打造 AI 私人提效助理实战知识库 最新版推荐阅读: 目录 3. 5.关于我们&致谢 AGI 知识库:一个启程的故事 介绍:WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,大家贡献并整合各种 AI 资源,使得大家都可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。无论您是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 特别感谢一路上支持和推荐知识库的伙伴们,并开辟一个目录深表感激。
2025-03-28
知识库目录
以下是通往 AGI 之路的知识库目录相关内容: 1. 直播一期:知识库及 GPT 基础介绍 知识库及社群介绍 最新知识库精选同步 通往 AI 绘画之路(小红书) 知识库目录导览 2. 5.关于我们&致谢 AGI 知识库:一个启程的故事 介绍:WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库 3. ?通往 AGI 之路分享会 深入浅出理解 AI 目录: 有趣的 AI 案例 AI 的原理 Diffusion 原理和案例 什么是 Agent
2025-03-21
给我一份通往AIGC的学习目录
以下是一份通往 AIGC 的学习目录: 1. AIGC 概述 1.1 GenAI、AIGC 的基本概念 GenAI 的定义、工作原理及应用 典型的 GenAI 产品 AIGC 的定义及创建方式 国内 AIGC 的监管框架 1.2 AIGC 的分类及应用 语言文本生成的模型和代表项目 图像生成的技术和代表项目 音视频生成的方法和代表项目 AIGC 在音乐生成、游戏开发和医疗保健等领域的应用 1.3 AIGC 应用可能引发的风险 内生风险,如算法的不可解释性和不可问责性,代码开源的安全和伦理担忧 数据隐私问题,如数据泄露、匿名化不足、未经授权的数据共享 知识产权风险,如作品侵权、不当竞争 相关法律和规定对 AIGC 的要求 AIGC 滥用可能导致的问题,如虚假信息传播、侵犯隐私 2. AI 赋能教学 从易到难的学习路径 了解 AI 工作原理 尝试各种 AI 工具 学会优化提示词 生成课程资源 解决教学场景 课上师生机共学 促学生正确使用 提升人机共创力 相关主题 AIGC 教育革命:技术原理与课堂实践 AI 从工具到助手赋能教师提升效率与能力 大语言模型的教学潜力:交流技巧与心得 AI 与教育场景融合拓展教学边界与创新场景 AI 与人类智能的共生放大学生思考力塑造深度学习能力 一线教师的 AI 需求与高效工具推荐 AI 赋能课堂的核心逻辑:从理论到应用 解码 AI 教学案例:创新与实践 教学主要负担分析,如备课压力、适应新课标
2025-03-17
知识库目录
以下是通往 AGI 之路的知识库目录: 1. 直播一期:知识库及 GPT 基础介绍 知识库及社群介绍 知识库目录导览 2. 5.关于我们&致谢 AGI 知识库:一个启程的故事 3. ?通往 AGI 之路分享会 深入浅出理解 AI 目录 有趣的 AI 案例 AI 的原理 Diffusion 原理和案例 什么是 Agent 此外,还包括以下相关链接: 直播回放:https://www.bilibili.com/video/BV1QN411j719/ (小红书)
2025-03-03
请帮我梳理WaytoAGI知识库所有信息的目录
以下是 WaytoAGI 知识库的信息目录: 1. 通往 AGI 之路知识库使用指南 智能纪要 总结 关于 AI 知识库使用及 AIPO 活动的介绍 AIPO 线下活动及 AI 相关探讨 way to AGI 社区活动与知识库介绍 关于 AI 知识库及学习路径的介绍 时代杂志评选的领军人物 AI 相关名词解释 知识库的信息来源 社区共创项目 学习路径 经典必读文章 初学者入门推荐 历史脉络类资料 2. 介绍说明 AJ,产品经理,「通往 AGI 之路」WaytoAGI 开源知识库的创建者 项目的起源和社群开发的初衷 社区介绍 WaytoAGI 是一个致力于人工智能学习的中文知识库和社区平台,为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 全球领先的 AI 开源社区,最新最全面的 AI 资源,丰富多样的技术活动,100+进行中的活动,4000+学习资源,1500000+社区成员。 知识库与社区平台:汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 学习资源:提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 实践活动:社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 开放共享:引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 用户基础:在没有任何推广的情况下,一年时间已有超过 100 万用户和超千万次的访问量。 目标与愿景:让每个人的学习过程少走弯路,让更多的人因 AI 而强大。 目前合作过的公司/产品:阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等 3. 「用 AI 一起搞钱搞事搞脑子他们在线下密谋」 WaytoAGI 是啥? 是一个专门讲人工智能的“百科全书”,从基础到高级,还有实用的 AI 工具推荐、案例分享、行业最新动态,用飞书文档整理得清楚。 对我有啥用? 对 AI 一窍不通,从零开始教。 懂点 AI,提供实用工具和案例。 怕错过 AI 最新动态,帮你整理资讯。 想用 AI 赚钱或创业,告诉你相关工具和方法。 不想浪费时间找资源,帮你筛选推荐。
2025-02-26