Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有comfyui的系列教程吗

Answer

以下是一些关于 ComfyUI 的系列教程资源:

  1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。可在ComfyUI 官方文档网站获取相关信息。
  2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。教程地址是优设网的 ComfyUI 入门教程
  3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。可在知乎的 ComfyUI 介绍找到相关教程。
  4. Bilibili:提供了从新手入门到精通的一系列视频教程,可在Bilibili 的 ComfyUI 系列教程找到。

此外,还有以下相关教程:

  1. 硅基流动提供的 BizyAir ComfyUI 系列教程,包括六节课程,如文生图工作流搭建、SiliconLLM 的使用、LoRA 的使用和上传等。详情可访问 https://siliconflow.cn/zh-cn/ 。
  2. ComfyUI 共学快闪飞书学习群中的各种教程,如王蓉的基础搭建和转绘、唯有葵花向日晴的基础教程和工作流开发等。

内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有comfy ui相关的学习资料?

是的,根据搜索结果,有几个网站提供了关于ComfyUI的学习教程:1.ComfyUI官方文档:提供了ComfyUI的使用手册和安装指南,适合初学者和有经验的用户。你可以在[ComfyUI官方文档网站](https://www.comfyuidoc.com/zh/)找到相关信息。2.优设网:提供了一篇详细的ComfyUI入门教程,这篇教程适合初学者,详细介绍了ComfyUI的特点、安装方法以及如何使用ComfyUI生成图像等内容。教程地址是[优设网的ComfyUI入门教程](https://www.uisdc.com/comfyui-3)。3.知乎:有用户分享了ComfyUI的部署教程和使用说明,这篇介绍适合那些已经有一定基础并希望进一步了解ComfyUI的用户。可以在[知乎的ComfyUI介绍](https://zhuanlan.zhihu.com/p/662041596)找到相关教程。4.Bilibili:提供了一系列的ComfyUI视频教程,涵盖了从新手入门到精通的各个阶段。这些视频教程可以帮助用户更直观地学习ComfyUI的使用。可以在[Bilibili的ComfyUI系列教程](https://www.bilibili.com/video/BV14r4y1d7r8/)找到视频教程。这些资源为用户提供了丰富的学习材料,从基础操作到高级技巧,可以帮助用户更好地掌握ComfyUI的使用。内容由AI大模型生成,请仔细甄别。

BizyAir ComfyUI系列教程

硅基流动是一家专注于生成式AI计算基础设施的公司,提供高效能、低成本的AI模型云服务平台和推理引擎https://siliconflow.cn/zh-cn/[heading1]六节课程~帮助你快速入门-合集链接[heading1]BizyAir教程视频第一节—文生图工作流搭建[heading1]BizyAir教程视频第二节—SiliconLLM的使用[heading1]BizyAir教程视频第三节—LoRA的使用和上传[heading1]BizyAir教程视频第四节—图生图工作流搭建+JOY caption[heading1]BizyAir教程视频第五节—局部重绘/细节修复[heading1]BizyAir教程视频第六节—ControlNet的使用[heading1]BizyAir教程视频第七节—InstantID和IPAdapter的介绍和应用场景

ComfyUI共学快闪

王蓉??Wang Easy基础搭建和转绘唯有葵花向日晴基础教程,工作流开发,实际应用场景热辣Huolarr-AI系统课私聊图生视频咖菲猫咪基础教程/工作流搭建思路/各版本模型使用的优缺点傅小瑶Lucky如何制作多人转绘视频云尚工作流节点搭建思路。FǎFá热门节点功能,搭建森林小羊基本报错解决方式及基础工作流逻辑分析苏小蕊基础教程Sophy基础课程蜂老六装一百个最新常用插件后如何快速解决冲突问题阿苏工作流框架设计aflyrt comfyui节点设计与开发老宋&SD深度解释虚拟环境部署和缺失模型的安装Liguo模型训练啊乐福基础课程塵优秀案例风信基础课程➕平面设计应用场景北南基础课程视频工作流框架设计Damon基础课程渔舟基础课程+工作流搭建思路乔木船长工作流☘️基础教程☘基础教程工作流设计+典型案例剖析麒白掌工作流搭建OutSider风格迁移吴鹏基础+工作流搭建拾光工作流基础搭建从入门到精通茶浅浅。视频转绘/节点工作流介绍百废待.新(早睡版)工作流从入门到进阶电商应用场景

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
AI视频教程
以下是为您提供的 AI 视频教程相关内容: AI 让古画动起来的教程: 1. 对于简单的图,找原图直接写提示词即可。若碰到多人多活动的复杂图,需把长图分多个模块,比如将一张图分成 4 个模块。 2. 智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。若有水印,可以把图片向下拓展一部分,然后截掉。 3. 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 5. 用剪映把抽卡合格的视频放在去掉内容的背景图片,通过色度抠图调整去掉视频的背景。多个视频放在背景图片,一起动即可。 AI 视频相关的软件教程: 包括视频模型如 luma Dream Machine、可灵、MiniMax 海螺 AI、Sora、Vidu 等,工具教程如 Hedra,视频工具如 VIGGLE,以及应用教程如视频转绘、视频拆解等。相关链接如下: WaytoAGI X 剪映的 AI 创意视频征集令·第 1 期: 1. 征集内容:使用 AI 功能创作的创意视频成片,也可投稿 AI 创意视频的教程(教大家如何做一个 AI 创意视频)。AI 功能包括但不限于:AI 对口型、AI 改动作、AI 配音、克隆音色、AI 音乐、AI 特效、AI 图文成片、AI 剪视频等。不包括纯图片生成或纯视频生成的内容(特指用 AI 工具生成的图片、图生视频,但视频里没有添加 AI 功能)。 2. 创作工具:主要使用「剪映」平台工具创作,可多使用剪映平台的 AI 功能/新功能;部分 AI 效果若剪映无法实现,可使用其他软件创作。 3. 内容价值:视频需有消费价值,要有一定内容主题,有故事感、或者有梗、或者有核心观点表达,让用户有持续观看和点赞、收藏的欲望。缺少内容主题、过于简单、过于模板化的内容将不予通过。在抖音、小红书等平台点赞量高的内容,审核通过率大大提升! 4. 原创度:作品需要原创、极具创意和独特性,且符合当代年轻群体的审美和兴趣喜好,不可照搬、抄袭他人创意,一经发现将取消活动奖励,视情节严重情况回收灵感发布权限。 5. 作品延展度:作品有可模仿性,其他创作者看完后,可模仿学习或二创。比如:前期素材易获取,后期素材易剪辑或处理,让其他视频创作者有强烈的模仿欲望,且对自己模仿或二创视频有成就感和分享欲。 6. 作品时长:时长适中,最短不低于 15 秒,最长不建议超过 3 分钟。
2025-04-13
AI出设计图教程
以下是关于 AI 出设计图的教程: 使用 Midjourney 生成 UI 界面: 页面指令:指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”(登录页)、“Profile Page”(个人资料页)。 社交平台:关键词“landing page”可生成社交平台的登录页设计。 信息类:关键词“Profile Page”可生成人力资源类产品的个人资料页,包含照片、自我介绍、基本信息等内容。 Midjourney 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前要直接用于开发仍有距离。 使用 Claude 生成设计稿的技巧: 引用 Tailwind CSS 写组件样式,确保色彩、响应式和基础组件的美观度。 按照特定的四个技巧可让 Claude 设计出美观的界面或组件。 生成设计稿的方法:将生成的代码部署到线上,使用 html.to.design 这个 Figma 插件将网页转换为设计稿,但每天免费次数有限。 进阶技巧和关键词: 图片内容一般分为二维插画和三维立体两种表现形式。 主题描述:可描述场景、故事、元素、物体或人物细节等。描述场景中的人物时应独立描述,避免长串文字,否则 AI 可能识别不到。 设计风格:可通过找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。对于材质的描述,关键词的运用较为复杂,需要针对特定风格进行“咒语测试”。
2025-04-12
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
ai制作幽默表情包系列的工作流,用dify或make实现的全流程
以下是使用 Dify 或 Make 实现 AI 制作幽默表情包系列的全流程: 1. 素材准备 平面设计稿:确定表情包的基本设计和角色形象。 2. 制作流程 转 3D:将平面设计稿转换为 3D 形式,增加立体感和丰富度。 AI 生成场景:利用相关工具生成适合的场景。 AI 图生视频:将生成的图片转换为视频。 剪辑转 gif:对视频进行剪辑,并转换为 gif 格式。 压缩:使用图像压缩工具,如 https://imageresizer.com/zh/%E5%9B%BE%E5%83%8F%E5%8E%8B%E7%BC%A9 ,对 gif 进行压缩,以满足上传要求。 上传微信表情平台审核:完成压缩后,上传至微信表情平台进行审核。 相关工具: 即梦:https://jimeng.jianying.com/aitool/image/generate Recraft: https://www.recraft.ai/
2025-03-11
清华大学出的deepseek系列教程
以下是关于清华大学出的 deepseek 系列教程的相关信息: 2024 人工智能报告中提到 DeepSeek 在编码任务中已成为社区的最爱,其组合了速度、轻便性和准确性而推出的 deepseekcoderv2。 2 月 7 日,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能及使用方法,包括智能对话、文本生成、代码生成、自然语言理解等,还介绍了提示语设计的核心技能、常见陷阱及应对方法。 2 月 18 日,清华大学沈少阳发布了《》
2025-02-24
我现在需要根据一系列的 yaml 和 markdown 构建一个知识库,并且需要支持 AI 问答,每次 AI 问答的结果都要保存成一个新的内容放到知识库中,请问从经济效益来看,有哪些服务可以使用?
目前从经济效益的角度来看,以下一些服务可能有助于您构建这样的知识库并支持 AI 问答以及结果保存: 1. 云服务提供商,如阿里云、腾讯云、AWS 等,它们提供可扩展的计算和存储资源,您可以根据实际需求灵活配置,避免过度投入硬件成本。 2. 开源的知识管理和问答系统框架,例如使用 Elasticsearch 结合相关插件来实现问答功能,成本相对较低,但可能需要一定的技术投入进行搭建和维护。 3. 一些专门针对知识管理和 AI 应用的 SaaS 服务,它们通常按使用量计费,初期投入较小,适合小规模应用。 需要注意的是,具体选择哪种服务取决于您的业务规模、技术能力、预算以及对性能和功能的要求。
2025-02-01
吴恩达系列课程
以下是关于吴恩达系列课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版、《Building Systems with the ChatGPT API》课程中文版、《LangChain for LLM Application Development》课程中文版等。 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 LangChain?️?中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由两个在 LLM 创业者维护,希望帮助到刚进入 AI 应用开发的朋友们。 LLM 开源中文大语言模型及数据集集合中的 LLM 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 吴恩达讲 Prompt 相关课程: 谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教您书写 AI 提示词,并且最后会教您利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 吴恩达和 Open AI 合作的提示工程课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 8 月 24 日历史更新(归档): 吴恩达最新的《》短课程上线,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据您自己的数据训练和评估 LLM。 《》非常深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。 在》,用一张清晰、具有美感的图片展示了 Models、Prompt Templates、Chains、Agent 和 MultiAgent 之间的关系。 《》,周伯文是清华大学讲席教授、衔远科技创始人,也是前京东集团高级副总裁,他在 GAIR 2023 论坛上发表了自己对未来的看法:AI 未来将融合语言与工具智能,实现人工智能在复杂场景下的应用。
2025-01-11
什么网站能将一个故事生成一系列有关故事的图片
以下是一些能够将故事生成一系列图片的网站和相关方法: 1. 扣子:通过自带的图像工作流,将 LLM 生成的故事内容传入,使用提示词优化节点和文生图节点生成配图。可以同时处理多个段落内容以节约时间,并考虑内容连续性生成连续的图片。同时要注意数据来源和格式,以及每步执行所需的数据格式适配。 2. MJ(Midjourney):先构思或利用 ChatGPT 描述适合画绘本的故事场景,如《Lily 的奇妙之旅》,分为多个场景并用包含环境、人物、动作的话描述。生成场景图片时,使用特定的 prompt 包含场景和风格等描述,为使人物和熊有更好的互动感,生成场景时也包括人物主角。还可使用抠图工具处理得到所需的场景图像。 此外,Sora 也有生成涉及一系列事件故事的能力,但可能还不够完美。
2024-12-04