Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

消除大模型幻觉的方法

Answer

以下是关于消除大模型幻觉的方法的相关内容:

大模型出现幻觉的原因及部分解决办法:

  1. 原因:
    • 样本存在错误(Imitative Falsehoods),即学习的“教材”中有错误。
  2. 解决办法:
    • 上采样(Up Sampling)。

大模型存在的问题:

  1. 输出结果具有不可预测性。
  2. 静态的训练数据导致知识存在截止日期,无法即时掌握最新信息。
    • 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。
    • 幻觉问题:基于数学概率的文字预测导致会在没有答案的情况下提供虚假信息等。
    • 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。

Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。

RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。

Content generated by AI large model, please carefully verify (powered by aily)

References

从 0 到 1 了解大模型安全,看这篇就够了

隐私泄露可以被大致分为三种:记忆隐私泄露,系统隐私泄露与上下文隐私泄露。我们先来聊聊第一种:记忆数据了、泄露。自回归语言模型的训练可以类比为模型在预训练数据中不断学习的过程,在学习的过程中,除了提取的`语言知识之外,模型无可避免的会记住一些数据。就像背诵一样,可能查询是完全没有恶意的,但模型返回了他人的隐私信息,例如左侧的ChatGPT回答,就正是模型输出了无意识记忆的url,而该url正好指向他人的隐私相册。模型的记忆形式其实和人类很类似,如果模型背诵的次数少,那么模型的记忆能力就会显著下降例如右图所示,横轴是重复次数,纵轴是被记住的可能性,可以看到见过的次数越多,模型就越容易背下来因此在LLM的数据隐私保护中,一个直观地解决办法就是让模型减少见数据的次数,少看几遍,也就记不住了第二种则是系统隐私泄露。例如,大家熟知的“骗取GPTs的System Prompt”就是系统隐私泄漏的一种。第三种则是“上下文隐私泄露”。接下来,我们来讲讲大家耳熟能详的“幻觉”问题。大语言模型偶尔会根据输入,输出一些荒谬或不符合事实的内容。目前,各家大语言模型都在该问题上表现得不尽如人意。为什么大语言模型会出现幻觉呢?以下的论文提供了一些解释:例如第一种:Imitative Falsehoods,样本存在错误。如果大语言模型这个“学生”学习的“教材”中有错误,那它也对不到哪里去。缓解该问题的一个办法是上采样(Up Sampling)。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

从原理到应用一次讲清楚 Prompt

原创小宝聊AI小宝聊AI 2024-01-30 00:12发表于浙江小宝聊AI十年大厂架构师,专注于大模型技术和应用29篇原创内容公众号本文长度5000字阅读时长预计需要20分钟本文目录一、什么是Prompt二、用更加专业的方式定义Prompt三、用数学来理解Prompt四、NLP发展的四大范式五、为什么Prompt可以减少幻觉六、Open AI()提供的最佳实践七、可以直接使用Prompt的关键框架八、为什么使用框架的效果好[heading2]1、什么是Prompt[content]简单来说,其实是一套你和大模型交互的一种语言模板。通过这个模版,你可以输出你对于大模型响应的指令,用于大模型应该具体做什么指定,完成什么任务,如何处理具体的任务,并最终输出你期望的结果。虽然大模型具有基础的文字能力,能够理解你对于模型说的大部分话,但是为了达成大模型更好的回答效果,需要通过Prompt,来提升模型返回的准确性。如果说,过去的时代,人机交互的主要方式是通过代码,那么我认为在大模型时代,交互语言的主要方式其实是Prompt。[heading2]2、用更加专业的方式定义[content]Prompt大模型的本质是一个基于语言的概率模型,他返回他觉得概率最大的内容。如果是直接问大模型,没有提供Prompt,相当于大模型随机给出他的答案。有了Prompt,其实是给了一个模板,这个模板包括了对于模型的要求,输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。

Others are asking
AI幻觉是什么?
AI 幻觉是指 AI 系统生成的信息与事实不符或与预期不符的现象。具体表现为: 生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。 表现形式多种多样,例如在艺术创作中照片中突然出现第三只手臂。 AI 幻觉存在潜藏的风险: 误导用户,导致用户获取错误信息从而做出错误判断,如医疗 AI 助手给出错误诊断建议可能延误患者治疗。 传播虚假信息,用于制造和传播虚假新闻报道或社交媒体帖子,误导公众,影响社会稳定。 损害 AI 系统的可信度,降低用户对 AI 系统的信任度,阻碍 AI 技术推广和应用。 为了避免 AI 幻觉,需要对其生成的内容进行检查,因为即使是像 GPT4 这样相对扎实的模型或有互联网连接的 Bing 也不能完全消除幻觉。同时要注意人工智能不会真正解释自己,给出的解释可能是编造的,使用时要对其输出负责,防止被不道德地用来操纵或作弊。
2025-03-21
ai幻觉
AI 幻觉是指 AI 在生成内容时出现的错误或与现实世界不符的情况。以下是关于 AI 幻觉的一些重要方面: 在写东西方面: AI 容易“产生幻觉”并生成看似合理但可能完全错误的内容,需要对其生成的所有内容进行检查。 对于要求提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险。 AI 不会真正解释自己,对其思考过程的回答可能是完全编造的。 使用 AI 工具的输出需要承担责任。 在艺术创作方面: 许多 AI 工具会出现幻觉,如照片中突然出现第三只手臂,或者处理请求时间长。 对于试图通过内容实现盈利的用户可能更加令人沮丧。 从技术真相与应对策略角度: 本质:AI 幻觉是模型对训练数据中统计模式的过度依赖,导致无法准确理解和生成新情况的信息,从而输出与现实不符的内容,类似于人类认知偏差中大脑为节省认知资源对信息的扭曲。 表现形式:多种多样且难以察觉,如生成不存在的人物、地点、事件,或对已知事实错误描述;类似于人类的确认偏误、可得性偏差、锚定效应等。 产生原因:都与经验和知识有关,人类受个人成长经历、文化背景、知识结构等影响,而 AI 与训练数据质量、模型结构和训练策略有关,若训练数据有偏差或错误,模型会学习并体现在生成内容中。 影响:可能导致错误决策,如人类在生活中做出错误判断和选择,投资者受可得性偏差影响做出错误投资决策;AI 幻觉可能误导用户、传播虚假信息,甚至在医疗诊断等领域引发安全事故。 目前还没有完全消除 AI 幻觉的方法,但可以通过一些措施来降低其影响。
2025-03-19
ai的幻觉问题
AI 的幻觉问题主要体现在以下几个方面: 1. 可能编造不存在的 API 或错误代码,需要人工严格审查。 2. 在处理复杂项目时,难以设计架构和模块化,难以完全掌握项目需求,也难以独立完成编译、部署、调试等复杂任务。 3. 许多 AI 工具在艺术创作中会出现幻觉,例如照片中突然出现第三只手臂,或者处理请求时间过长。 4. 当用户追问时,AI 可能会钻牛角尖,给出越来越离谱的答复,还可能不懂装懂,提供错误知识。 针对模型幻觉问题,一些解决技巧包括: 1. 新建一个会话窗口重新提问。 2. 告诉 AI 忘掉之前的所有内容,重新交流。 3. 让 AI 退一步,重新审视整个结构,从零开始设计。 4. 当 AI 猜测并修改问题时,可提供日志让其依据判断问题所在。
2025-03-19
如何避免ai的幻觉
要避免 AI 的幻觉,可以从以下几个方面入手: 1. 提示词工程: 明确要求 AI 引用可靠来源,例如在询问历史事件时要求引用权威的历史文献,询问科学事实时要求引用已发表的科研论文,询问法律条款时要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时要求展示推导过程,询问代码功能时要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时指定名人的姓名和相关主题,询问新闻事件时指定事件的时间范围和相关关键词。 2. 数据方面: 数据清洗:利用各种技术手段对 AI 的训练数据进行“清洗”,去除错误信息、补充缺失数据、修正不一致的内容,并尽可能消除数据中的偏见。 数据增强:为 AI 模型提供更多、更丰富的训练数据,例如在训练图像识别模型时,对已有的图像进行旋转、缩放、裁剪等操作,生成更多新的样本,从而提高模型的泛化能力。 3. 从伦理和社会角度: 制定 AI 伦理规范:需要制定明确的 AI 伦理规范,引导 AI 技术的研发和应用,确保 AI 系统符合人类的价值观和道德准则,避免 AI 被用于危害人类利益的行为。 加强 AI 监管:加强对 AI 系统的监管,建立完善的评估机制,及时发现和纠正 AI 系统中的错误和偏差,防止 AI 幻觉造成严重后果。 提升公众的 AI 素养:提升公众的 AI 素养,让人们了解 AI 技术的原理和局限性,理性地看待 AI 幻觉问题,避免被 AI 误导。 需要注意的是,提示词工程只是一种辅助手段,要从根本上解决 AI 幻觉问题,还需要从数据、模型、训练方法等多个方面进行努力。同时,AI 幻觉既有负面影响,也可能带来正面价值,我们既要警惕其风险,也要善于利用其带来的机遇。
2025-03-07
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
ai消除字幕
以下是为您找到的关于 AI 消除字幕的相关信息: VSR 字幕去除工具:利用 AI 去除视频和图片中的字幕,支持智能填充处理,确保视觉质量。链接:
2025-03-05
可以消除背景音提取人生的AI
目前尚未有直接能完全消除背景音提取人声的通用 AI 工具。但在音频处理领域,有一些技术和软件可以在一定程度上实现这个功能,例如 Adobe Audition 等专业音频编辑软件,它们利用一些算法和滤波技术来减少背景噪音对人声的影响。不过,要达到完美的效果往往需要结合专业的音频知识和经验进行精细的调整。
2024-12-17
图片批量AI消除
以下是关于图片批量 AI 消除的相关信息: Stable Diffusion 应用: 放大处理:由于 mj 制作出来质量不高,可将图片放入 Stable Diffusion 中进行放大处理以达到清晰品质,还会添加一些细节。需安装放大插件(https://upscale.wiki/wiki/Model_Database),并配合填写高清 tag,如 8k 等,重绘度在 0.2 0.3 之间。 局部重绘修图:mj 中较难控制,可在 SD 里重新局部绘制修改。 制作深度图与相机动画:需安装 depthmap 深度插件,勾选 Generate 3d inpainted mesh,选项生成深度图以及模型文件。通过之前算出的模型,在坐标上变换(如旋转、平移等),然后图像映射到对应的深度图上,生成相应的视差图,可调节参数(时长、帧速率、相机移动方向)完成想要的视频相机制作。 AI 抠图:remove: 可以直接抠图,也可以安装在 PS 里进行操作,图片上传即可抠图,可用于做一些素材,用素材辅助做一些氛围动画,如叶子飘落、战斗时石头等素材。 AI 去水印工具: AVAide Watermark Remover:在线工具,使用 AI 技术从图片中去除水印,支持多种图片格式,操作简单,可选择水印区域,保存并下载处理后的图片,还提供去除文本、对象、人物、日期和贴纸等功能。 Vmake:提供 AI 去除图片水印功能,可上传最多 10 张图片,AI 自动检测并移除水印,处理完成后可保存生成的文件,适合快速去除水印及在社交媒体上分享图片的用户。 AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印,不留痕迹,支持直接粘贴图像或上传手机图像,操作简单方便。 这些工具各有特点,您可根据具体需求选择适合的去水印工具。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-09
消除图片文字
以下是关于消除图片文字的方法和相关工具的介绍: 消除图片文字的方法: 1. 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除图像中的噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升图像的清晰度和对比度。 2. 图像分割:使用图像分割算法将试卷图像中的书写笔迹和背景分离。常用的分割算法包括阈值分割、边缘检测和基于区域的分割方法。 3. 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别出试卷上的文字区域。 4. 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用的文字识别技术包括基于深度学习的端到端文本识别模型和传统的 OCR(Optical Character Recognition)技术。 5. 后处理:根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选):如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的书写笔迹特征来自动去除试卷上的笔迹。 AI 去水印的工具: 1. AVAide Watermark Remover:这是一个在线工具,使用 AI 技术从图片中去除水印。它支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,只需上传图片,选择水印区域,然后保存并下载处理后的图片即可。这个工具还提供了其他功能,如去除文本、对象、人物、日期和贴纸等。 2. Vmake:这个工具同样提供 AI 去除图片水印的功能。用户可以上传最多 10 张图片,AI 会自动检测并移除图片上的水印。处理完成后,用户可以选择保存生成的文件。这个工具适合需要快速去除水印的用户,尤其是那些需要在社交媒体上分享图片的用户。 3. AI 改图神器:这个工具提供 AI 智能图片修复去水印的功能,可以一键去除图片中的多余物体、人物或水印,不留任何痕迹。支持直接粘贴图像或上传手机图像,操作简单方便。 这些工具各有特点,可以根据您的具体需求选择最适合您的去水印工具。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-09-18
我想要找一款AI智能消除照片背景杂物的工具
以下为您推荐一些 AI 智能消除照片背景杂物的工具: 1. RMBG1.4 去除照片背景模型:高精度背景去除,适用于电商、广告等场景。支持视频背景批量去除,提供蒙版输出功能。云端处理速度快,性能卓越。链接:https://github.com/ZHOZHOZHO/ComfyUIBRIA_AIRMBG ,https://x.com/xiaohuggg/status/1755075272410538450?s=20 2. AVAide Watermark Remover:在线工具,使用 AI 技术从图片中去除水印。支持多种图片格式,如 JPG、JPEG、PNG、GIF 等。操作简单,上传图片,选择水印区域,保存并下载处理后的图片。还提供去除文本、对象、人物、日期和贴纸等功能。 3. Vmake:提供 AI 去除图片水印的功能。可上传最多 10 张图片,AI 自动检测并移除水印。处理完成后可选择保存生成的文件。适合需快速去除水印、在社交媒体分享图片的用户。 4. AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中多余物体、人物或水印,不留痕迹。支持直接粘贴图像或上传手机图像,操作简便。 这些工具各有特点,您可以根据具体需求选择最适合您的工具。
2024-09-09
AI 制作短视频的方法
以下是关于 AI 制作短视频的方法: 1. 确定视频风格和主题:使用 Fanbook 中的 niji6 模型及sref 指令,加上每张图片的提示词来确定视频风格的一致性。比如根据丝绸之路的古风主题确定风格和时长,然后设定故事主线和镜头。 2. 创作故事剧本和分镜头:参考分镜头的基本格式要求,按照场景、地点、镜号、画面描述、台词、音效等维度进行填充。尽可能精简人物对话,提炼重点。当缺乏画面灵感时,可以借助语言大模型,如 Kimi 来获取帮助。 3. 生成角色和场景:根据剧本中的人物性格特征和时代背景,描绘人物的提示词、上传角色参考图cref,并将角色背景扣除以便于进行角色加背景的融合生成时进行垫图操作。场景提示词从剧本中的画面描述进行提取,采用文生图模式,画面风格选择提前准备好的风格图进行垫图,上传角色图、场景背景进行参考生成,提高人物和场景的融合度。 4. 让图片动起来:使用即梦进行图生视频,上传图片至视频生成模块,用简单提示词描绘画面中的动态内容,可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主,生成速度根据视频节奏选择。 此外,根据视频脚本生成短视频的 AI 工具有多种,适用于不同的应用场景和需求,包括: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 5. Runway:能够将文本转化为风格化的视频内容,适用于多种应用场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-13
推荐几个AI工具及其使用方法,我要用于病案质控
以下为您推荐几个可用于病案质控的 AI 工具及其使用方法: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。您可以通过访问使用。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。您可以通过使用。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关病案质控的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。您可以通过使用。 这些工具可以帮助您从不同的角度审视和改进您的病案质控工作,您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-13
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
数据挖掘评论分析生成可视化的免费方法
目前暂时没有关于数据挖掘评论分析生成可视化免费方法的相关内容。但您可以通过以下途径寻找免费的解决方案: 1. 利用开源的数据挖掘和可视化工具,如 R 语言中的 ggplot2 库、Python 中的 matplotlib 和 seaborn 库等。 2. 搜索在线的免费数据可视化平台,部分平台可能提供一定程度的数据挖掘和评论分析的可视化功能。 3. 参考相关的技术论坛和社区,获取其他用户分享的免费方法和经验。
2025-03-26
请详细讲述一下这个网站《通往AGI之路》的学习方法?
《通往 AGI 之路》的学习方法如下: 1. 系统学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等高质量学习内容,并整理成学习笔记,在整理过程中与大家交流互动。 2. 社区共创学习:对于觉得系统学习枯燥的同学,可以等待社区共创内容,通过共创做小项目来反向推动学习。 3. 了解相关原理:学习 A16Z 推荐的包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 4. 探索应用:例如了解 Stable Diffusion 运作原理与 GPT 训练现状。 5. 针对特定软件:对于 AE 软件,可在 B 站找丰富的入门课程自学,也可从包图网下载工程文件学习。通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习,还可参考模板。 6. 名词解释:理解包括 AGI、AIGC、agent、prompt 等 AI 相关名词,可通过与 AI 对话或李继刚老师的课程来理解。 7. 信息获取:关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 8. 参与活动:参加如 AIPO、CONFIUI 生态大会等社区活动,每月还有切磋大会。 9. 阅读经典:阅读介绍 GPT 运作原理、Transformer 模型、扩散模型等的经典必读文章,以及软件 2.0 时代相关内容。 10. 初学者推荐:对于初学者,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。同时,整理 open AI 的发展时间线和万字长文回顾等历史脉络类资料。
2025-03-23