Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

MoE模型训练为什么会比dense模型要更困难?

Answer

MoE 模型训练比 dense 模型更困难的原因主要包括以下几点:

  1. 内存需求:MoE 模型需要将所有专家加载到内存中,这导致其需要大量的 VRAM。
  2. 微调挑战:微调 MoE 模型存在困难,历史上在微调过程中较难泛化。
  3. 训练设置:将密集模型转换为 MoE 模型时,虽然训练超参数和训练设置相同,但 MoE 模型的特殊结构仍带来了训练上的复杂性。
  4. 计算效率与泛化平衡:MoE 模型在训练时更具计算效率,但在微调时难以实现良好的泛化效果。
Content generated by AI large model, please carefully verify (powered by aily)

References

苹果大模型MM1杀入场:300亿参数、多模态、MoE架构,超半数作者是华人

最后,研究者介绍了预训练模型之上训练的监督微调(SFT)实验。他们遵循LLaVA-1.5和LLaVA-NeXT,从不同的数据集中收集了大约100万个SFT样本。鉴于直观上,更高的图像分辨率会带来更好的性能,研究者还采用了扩展到高分辨率的SFT方法。监督微调结果如下:表4展示了与SOTA比较的情况,「-Chat」表示监督微调后的MM1模型。首先,平均而言,MM1-3B-Chat和MM1-7B-Chat优于所有列出的相同规模的模型。MM1-3B-Chat和MM1-7B-Chat在VQAv2、TextVQA、ScienceQA、MMBench以及最近的基准测试(MMMU和MathVista)中表现尤为突出。其次,研究者探索了两种MoE模型:3B-MoE(64位专家)和6B-MoE(32位专家)。在几乎所有基准测试中,苹果的MoE模型都比密集模型取得了更好的性能。这显示了MoE进一步扩展的巨大潜力。第三,对于30B大小的模型,MM1-30B-Chat在TextVQA、SEED和MMMU上的表现优于Emu2-Chat37B和CogVLM-30B。与LLaVA-NeXT相比,MM1也取得了具有竞争力的全面性能。不过,LLaVA-NeXT不支持多图像推理,也不支持少样本提示,因为每幅图像都表示为2880个发送到LLM的token,而MM1的token总数只有720个。这就限制了某些涉及多图像的应用。

苹果大模型MM1杀入场:300亿参数、多模态、MoE架构,超半数作者是华人

研究者收集了之前的消融结果,确定MM1多模态预训练的最终配方:图像编码器:考虑到图像分辨率的重要性,研究者使用了分辨率为378x378px的ViT-H模型,并在DFN-5B上使用CLIP目标进行预训练;视觉语言连接器:由于视觉token的数量最为重要,研究者使用了一个有144个token的VL连接器。实际架构似乎不太重要,研究者选择了C-Abstractor;数据:为了保持零样本和少样本的性能,研究者使用了以下精心组合的数据:45%图像-文本交错文档、45%图像-文本对文档和10%纯文本文档。为了提高模型的性能,研究者将LLM的大小扩大到3B、7B和30B个参数。所有模型都是在序列长度为4096、每个序列最多16幅图像、分辨率为378×378的情况下,以512个序列的批量大小进行完全解冻预训练的。所有模型均使用AXLearn框架进行训练。他们在小规模、9M、85M、302M和1.2B下对学习率进行网格搜索,使用对数空间的线性回归来推断从较小模型到较大模型的变化(见图6),结果是在给定(非嵌入)参数数量N的情况下,预测出最佳峰值学习率η:通过专家混合(MoE)进行扩展。在实验中,研究者进一步探索了通过在语言模型的FFN层添加更多专家来扩展密集模型的方法。要将密集模型转换为MoE,只需将密集语言解码器替换为MoE语言解码器。为了训练MoE,研究者采用了与密集骨干4相同的训练超参数和相同的训练设置,包括训练数据和训练token。

AIGC Weekly #51

MoEs可以比密集模型更快地进行预训练,并且在相同数量参数情况下提供更快速度推断。它们需要大量VRAM,因为所有专家必须加载到内存中。微调MoEs存在挑战,但最近对MoE指令微调工作显示出了希望。MoEs由门控网络和专家组成,在变压器模型中替换每个FFN层。训练MoEs更具计算效率性,但它们在微调过程中历史上很难泛化。使用MoEs进行推断速度较快,因为只使用了部分参数,但由于需要加载所有参数而导致内存需求较高。该博文追溯了MoEs的历史、发展以及它们在自然语言处理和计算机视觉领域应用方面。它解释了稀疏性和负载平衡概念在MoEs中至关重要,这对于有效地进行训练和推理非常重要.文章还讨论了如何将MoE与变压器结合起来,特别是像GShard和Switch Transformers这样规模庞大的模型.完成有关利用router Z-loss稳定培养并学习专业知识等问题分析增加专业人员数量对预先培养和微调产生影响博客文章还涉及何时使用稀疏MOES与密集模式,并提供见解使MOES在预先培养和推理更有效列出MOES的开源项目和已发布模式包括Switch Transformers,NLLB MoE,OpenMoe and Mixtral 8x7B未来工作方向包括将稀疏MOES蒸馏成密集模式,模式合并技术和极端量子化技术该博客文章总结了值得探索的MOES领域,并提供进一步阅读主题资源列表。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
什么是MOE?
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。例如,苹果构建了参数最高可达 300 亿的多模态模型系列 MM1,它由密集模型和混合专家(MoE)变体组成,在预训练指标中实现 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。阿里通义千问也有大型专家模型(MoE),如 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准上超越 DeepSeek V3,引发社区关注。
2025-03-21
MoE
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下步骤: 1. 定义专家网络:首先定义多个专家网络,每个专家网络负责处理特定的任务或数据集,这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。
2025-02-26
moe是什么
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大而复杂的任务拆分成多个小而简单的任务,并让不同的专家网络负责处理不同的任务。 在 MoE 架构中,输入数据会被分配给不同的专家网络进行处理,每个专家网络会返回一个输出结果,最终的输出结果是所有专家网络输出结果的加权和。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。例如,苹果的大模型 MM1 就采用了 MoE 架构,其参数最高可达 300 亿,由密集模型和混合专家(MoE)变体组成,在预训练指标中实现了 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。在 MM1 中,为了提高模型的性能,研究者将 LLM 的大小扩大,并通过在语言模型的 FFN 层添加更多专家来扩展密集模型。
2025-01-12
MoE
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。这样做的好处是可以提高模型的灵活性和可扩展性,同时减少模型的参数量和计算量,从而提高模型的效率和泛化能力。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络负责处理特定的任务或数据集。这些专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。 此外,苹果大模型 MM1 也采用了 MoE 架构,研究者在小规模、9M、85M、302M 和 1.2B 下对学习率进行网格搜索,通过专家混合(MoE)进行扩展。要将密集模型转换为 MoE,只需将密集语言解码器替换为 MoE 语言解码器。为了训练 MoE,采用了与密集骨干相同的训练超参数和相同的训练设置,包括训练数据和训练 token。
2025-01-01
混合专家模型(MoE
混合专家模型(MoE)是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大而复杂的任务拆分成多个小而简单的任务,让不同的专家网络负责处理不同的任务,这样能提高模型的灵活性、可扩展性,减少模型的参数量和计算量,从而提升模型的效率和泛化能力。 MoE 架构的实现通常包含以下步骤: 1. 定义专家网络:先定义多个专家网络,每个负责特定任务或数据集,这些网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据训练每个专家网络,获取其权重和参数。 3. 分配数据:在训练中,将输入数据分配给不同专家网络处理,分配方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:对每个专家网络的输出结果进行加权求和,得到最终输出。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域应用广泛。 在苹果大模型 MM1 中也应用了 MoE 架构。研究者使用三种不同类型的预训练数据,构建了参数最高可达 300 亿的多模态模型系列 MM1,它由密集模型和混合专家(MoE)变体组成,在预训练指标中实现 SOTA,在一系列已有多模态基准上监督微调后也能保持有竞争力的性能。在 MM1 的最终模型和训练方法中,通过专家混合(MoE)进行扩展,将密集语言解码器替换为 MoE 语言解码器,并采用与密集骨干相同的训练超参数和设置进行训练。
2025-01-01
我想学习MOE设计分子软件,你能帮助我吗
MoE(Mixture of Experts)架构是一种深度学习模型结构,由多个专家网络组成,每个专家网络负责处理特定的任务或数据集。其核心思想是将一个大的、复杂的任务拆分成多个小的、简单的任务,并让不同的专家网络负责处理不同的任务。 MoE 架构的实现通常需要以下几个步骤: 1. 定义专家网络:首先需要定义多个专家网络,每个专家网络可以是不同的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 训练专家网络:使用有标签的训练数据对每个专家网络进行训练,以获得每个专家网络的权重和参数。 3. 分配数据:在训练过程中,需要将输入数据分配给不同的专家网络进行处理。分配数据的方法可以是随机分配、基于任务的分配、基于数据的分配等。 4. 汇总结果:将每个专家网络的输出结果进行加权求和,得到最终的输出结果。 5. 训练模型:使用有标签的训练数据对整个 MoE 架构进行训练,以获得最终的模型权重和参数。 MoE 架构在自然语言处理、计算机视觉、语音识别等领域都有广泛的应用。它可以提高模型的灵活性和可扩展性,同时也可以减少模型的参数量和计算量,从而提高模型的效率和泛化能力。
2024-08-30
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09