Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

科学计算大模型的代表模型有哪些

Answer

科学计算大模型的代表模型主要有以下几种:

  1. Encoder-only 模型:适用于自然语言理解任务,如分类和情感分析,最知名的代表是 BERT。
  2. Encoder-decoder 模型:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表模型如谷歌的 T5。
  3. Decoder-only 模型:更擅长自然语言生成任务,如故事写作和博客生成,众多熟知的 AI 助手基本采用此结构,包括 ChatGPT。

大模型具有以下特点:

  1. 预训练数据量大:往往来自互联网,包括论文、代码、公开网页等,先进的大模型通常用 TB 级别的数据进行预训练。
  2. 参数众多:如 OpenAI 在 2020 年发布的 GPT-3 就已达到 170B 的参数。

在数字化处理中,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Self-attention)机制学习不同 token 之间的依赖关系,生成高质量 embedding。

大模型的“大”主要指用于表达 token 之间关系的参数多,如 GPT-3 拥有 1750 亿参数。当神经元数量达到百亿、千亿级别时,会出现群体智能,即智能涌现,这在自然界如蚂蚁群体中有典型体现,人脑也由约 1000 亿个神经元构成复杂神经网络。

Content generated by AI large model, please carefully verify (powered by aily)

References

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

人人都能搞定的大模型原理 - 神经网络

了解感知器和单神经元的原理是为了后续更好的了解“基于深度神经网络机器学习”的基础。我们经常所听到的大模型有几百亿几千亿的参数,这里的参数其实就是神经网络的输入权重和输出阈值的总和。我们假定一个神经元有9个输入权重,和1个输出阈值,那么就可以说该神经元有10个参数。当我们有100亿个这样的神经元时,此时就可以说我们的神经网络模型有1000亿个参数,也就是所谓的千亿级参数的大模型。是不是贼啦简单?原来各种官方一直提到的百亿,千亿参数的大模型,原来是这个意思呢。此处我们再做一点小小的延伸~我们上述所提到的感知机(单神经元),通过一定的学习算法,可以将这个单神经元具备一定简单的智能效果,比如识别单个数字。那么你想象一下,我们单个神经元通过一定的学习算法,可以出现简单的智能效果,此时如果有100亿个神经元呢?100亿个神经元合在一起所具备的智能效果,这将是一个多么强智能的效果存在。每个神经元都只需要记住自己的一点点规则,可以具备识别出一个非常小的一个能力,此时将这个神经元的数量扩大到100亿,1000亿,这就会出现我们现在所经常听到的群体智能,即智能涌现!“智能涌现”在自然界非常典型的案例就是蚂蚁,单只蚂蚁是非常简单的智能生物,但是一旦当一群蚂蚁聚集的时候,就会建造出非常复杂的蚁巢结构。(感兴趣的可以自行搜下)而我们人脑呢?根据科学的统计是人脑中约有1000亿个神经元,这些庞大的神经元构成了非常复杂的神经网络,这也是人脑智能的基础。所以知道为什么有时候明明也没运动,但是上班一天还是要吃很多食物了吗?因为你庞大神经元的运转也是需要消耗能量的呀。AI消耗电力补充能量,而我们消耗食物来补充能量(奇奇怪怪的知识又增加了?)

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
AGI三个字母分别代表什么
AGI 指通用人工智能(Artificial General Intelligence)。在相关讨论中,部分人认为大语言模型(LLM)具有 AGI 潜力,但也有人如 LeCun 表示反对。在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-30
视觉大模型的代表模型有哪些
以下是一些视觉大模型的代表模型: 1. Flamingo:一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到 MM 领域,引入新型开源 MM 指令跟踪数据集及基准 LLaVABench 以解决数据稀缺问题。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,复制 GPT4 的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含 OwlEval 教学评估数据集。 6. XLLM:扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域的未来研究制定标准。 8. Sora:符合视觉模型的规模化定律,是第一个展示确认新兴能力的视觉模型,包括遵循指令、视觉提示工程和视频理解等功能,能够根据人类指令生成长达一分钟的视频。 9. CLIP:开创性的视觉语言模型,将变压器架构与视觉元素结合,能在多模态生成框架中充当图像编码器。 10. Stable Diffusion:多才多艺的文本到图像 AI 模型,采用变压器架构和潜在扩散技术生成各种风格的图像。
2025-03-20
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
现在AI应用都有哪些代表性的工具,请用表格展示出来
|序号|已有产品|主题|使用技术|市场规模|一句话介绍|项目功能| |||||||| |81|下厨房口味调整功能|AI 菜谱口味调整工具|自然语言处理、数据分析|数亿美元|根据用户反馈调整菜谱口味|下厨房的口味调整功能可根据用户对菜谱的评价,利用 AI 分析后给出口味调整建议,如增加甜度、减少辣味等| |82|英语流利说纠错功能|AI 语言学习纠错平台|自然语言处理、机器学习|数十亿美元|帮助语言学习者纠正错误|英语流利说通过 AI 技术识别用户在语言学习中的发音、语法等错误,并提供纠正建议和练习| |83|豆瓣电影剧情分析工具|AI 电影剧情分析系统|数据分析、自然语言处理|数亿美元|分析电影剧情,提供深度解读|豆瓣电影的剧情分析工具利用 AI 对电影剧情进行分析,为用户提供剧情解析、主题探讨等内容| |84|腾讯文档分类功能|AI 办公文件分类系统|数据分析、机器学习|数亿美元|自动分类办公文件,方便管理|腾讯文档利用 AI 对用户上传的文件进行分类,如合同、报告、方案等,提高文件管理效率| |85|美丽修行定制方案功能|AI 美容护肤方案定制平台|图像识别、数据分析|数亿美元|根据用户肤质定制护肤方案|美丽修行根据用户上传的照片和肤质信息,利用 AI 定制个性化的护肤方案,包括产品推荐和使用顺序| |91|游戏内商城推荐功能|AI 游戏道具推荐系统|数据分析、机器学习|数亿美元|根据玩家需求推荐游戏道具|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等| |92|彩云天气分时预报|AI 天气预报分时服务|数据分析、机器学习|数亿美元|提供精准的分时天气预报|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动| |93|医渡云病历分析系统|AI 医疗病历分析平台|数据分析、自然语言处理|数十亿美元|分析医疗病历,辅助诊断|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议| |94|讯飞听见会议总结功能|AI 会议发言总结工具|自然语言处理、机器学习|数亿美元|自动总结会议发言内容|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理| |95|书法临摹软件|AI 书法作品临摹辅助工具|图像识别、数据分析|数亿美元|帮助书法爱好者进行临摹|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价| |7|AI 简历优化工具|超级简历优化助手|自然语言处理|数亿美元|帮助用户优化简历提高求职成功率|超级简历优化助手分析简历内容并提供优化建议| |8|酷家乐|AI 室内设计方案生成|图像生成、机器学习|数十亿美元|快速生成个性化室内设计方案|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案| |9|Amper Music|AI 音乐创作辅助工具|机器学习、音频处理|数亿美元|协助音乐创作者进行创作|Amper Music 根据用户需求生成旋律和编曲| |10|松果倾诉智能助手|AI 情感咨询助手|自然语言处理、情感分析|数亿美元|提供情感支持和建议|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询| |11|小佩宠物智能设备|AI 宠物健康监测设备|传感器数据处理、机器学习|数十亿美元|实时监测宠物健康状况|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警| |12|马蜂窝智能行程规划|AI 旅游行程规划器|数据分析、自然语言处理|数十亿美元|根据用户需求生成个性化旅游行程|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线|
2025-03-02
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25