以下是为您提供的新手学习 AI 的知识指导:
如果您不会代码,对于 AI 可以尝试了解以下作为基础的内容:
周鸿祎免费课 AI 系列第一讲中提到: 周鸿祎受李一舟的启发,发现大家对于 AI 的知识了解不多,尤其对于前沿 AI 的了解更是摸不着头脑,因此做免费课进行科普。他认为学习新领域时,先要学习框架,整体把握,避免出大方向的偏差。课程会先从宏观开始,如《预见 AGI》,从大框架上讲讲创新趋势和带来的启发,后面会宏观、微观结合,安排人工智能研究院的产品经理、技术专家讲基本产品的使用方法等微观层面的内容。
了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。
[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。
经过授权转载,原文链接:[周鸿祎免费课AI系列第一讲——全网唯一实录](https://v0dlvfownn.feishu.cn/docx/X0SYdawdvotwixxkLg4cLng0nph)2月29日,周鸿祎免费课AI系列第一讲直播3.5个小时,干货满满。互联网行业自身老兵周鸿祎系统性分享他对大模型、AGI以及未来人工智能发展的趋势判断,详解Sora创新突破的本质。关于AGI的全面深度思考,3万5千字完整版吐血整理,全网唯一无损版!建议收藏,反复学习!现场实录:我受李一舟这个事儿的启发,我发现大家对于AI的知识了解不多,尤其对于前沿AI的了解更是摸不着头脑,我想我有必要做一个科普课。首先,我不会像李一舟一样割韭菜,所以我做的是免费课,在AI时代,学习AI知识很有必要,我希望跟大家分享AI知识,共同交流。另外,我其实想分享一个学习方法给大家。当我进入一个新领域的时候,我先要学习框架,中国有句古话:一叶障目,或者只见树木不见森林。无论云计算、大数据、网络安全、物联网,包括人工智能,很多新技术层出不穷,首先要在整体上对它有一个整体的把握,这个整体把握住了,就不会出大方向的偏差。所以我的课程会先从宏观开始,比如今天我们演讲的主题《预见AGI》,我从大框架上跟大家讲讲创新趋势,这些创新带给我们的启发,后面我会宏观、微观结合,系统性的就几个主题展开系列免费课。我们安排人工智能研究院的产品经理、技术专家会跟我配合,会讲一些基本产品的一些使用方法这些微观层面的内容。