Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

gemini

Answer

Google 的多模态大模型叫 Gemini。Gemini 是由 Google DeepMind 团队开发的,它不仅支持文本、图片等提示,还支持视频、音频和代码提示。能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。被称为 Google 迄今为止最强大、最全面的模型,是一种“原生多模态大模型”,从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。

Gemini report 有中文翻译,翻译贡献者为林夕,源文档为 https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf 。本报告介绍了一种新的多模态模型 Gemini,它在图像、音频、视频和文本理解方面具有卓越的能力。Gemini 系列包括 Ultra、Pro 和 Nano 三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。

可以使用 Gemini 拆解视频,例如使用 Gemini 1.5 Pro 进行视频分析和拆解。有测试者如阿强、张余、Ling、洋洋等进行了相关测试,反馈效果较好,准确度很高。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Google 的多模态大模型叫什么?

Google的人工智能多模态大模型叫Gemini。具体介绍如下:-Gemini是Google DeepMind团队开发的多模态模型,不仅支持文本、图片等提示,还支持视频、音频和代码提示。-Gemini能够理解和处理几乎任何输入,结合不同类型的信息,并生成几乎任何输出。-Gemini被称为Google迄今为止最强大、最全面的模型。-Gemini被描述为一种"原生多模态大模型",从设计之初就支持多模态,能够处理语言、视觉、听觉等不同形式的数据。内容由AI大模型生成,请仔细甄别

Gemini report 中文翻译

本文翻译贡献者:林夕源文档:https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf本文主要对Gemini的report进行翻译,大部分经过人工校验,少部分根据个人对MLLM的理解进行翻译。如果不对的地方欢迎Comment。本报告介绍了一种新的多模态模型Gemini,它在图像、音频、视频和文本理解方面具有卓越的能力。Gemini系列包括Ultra、Pro和Nano三种尺寸,适用于从复杂的推理任务到设备内存受限的应用场景。对广泛的基准测试的评估表明,我们最有能力的Gemini Ultra模型在32个基准测试中的30个中提高了最先进的水平,特别是第一个在经过充分研究的考试基准测试MMLU上实现人类专家性能的模型,并在我们检查的20个多模态基准测试中的每一个中提升了现有SOTA。我们相信Gemini模型在跨模态推理和语言理解方面的新能力将能够实现各种用例,并且我们讨论了负责任地向用户部署它们的方法。

用 Gemini 拆解视频

大家可以放自己的案例,本文档可编辑使用Gemini 1.5 Pro,做视频分析和拆解能力了https://aistudio.google.com/[heading2]思路:[content]郑跃葵:拿个库布里克的电影来分析,连大师手法都学会了大峰AI绘画:太酷啦又多了一个AI视频创作助手Jones:b站大学复习有救了对!:拉片太方便了Shock:而且可以干掉人工标注了,安徽那边数据标注众包要失业了清慎:1.影视二创长剪短,一键生成小帅、小美、大壮、丧彪的故事2.警察叔叔查监控,一句话找出监控中的可疑现象3.替代Opus等长剪短工具[heading2]测试者:阿强[content]拆解作品[阿强:功夫熊猫版-如来神掌的完整复盘](https://waytoagi.feishu.cn/wiki/T6bFwVlppipd4ZkoddfcGbebnvd)好用,准确度很高,我把前几天用AI做的功夫熊猫-之离谱村版丢进去分析,效果很好拆解结果prompt:请你用极致详细的言语描述其中的每个镜头,包括其中有什么物体,在执行什么动作,产生什么形变,为什么这样设计分镜等等。感动,它竟然准确的认出了“如来神掌”Gemini 1.5 Pro给出的全文如下:[heading2]测试者:张余[content]拆解结果Gemini 1.5 Pro给出的全文如下:[heading2]测试者:Ling[content][heading2]测试者:洋洋[content]拆解结果

Others are asking
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
gemini-2.5目前是什么水平
Gemini 2.5 是一款全能思考模型,具有以下特点和优势: 多领域达到 SOTA 水平,逻辑、代码、任务处理能力大幅提升。 支持 100 万 tokens 上下文,具备强大的阅读能力。 统一架构原生多模态支持,图文音码协同处理,并非外挂而是原生融合。 您可以通过以下链接获取更多详细信息:https://www.xiaohu.ai/c/xiaohuai/googlegemini25proexperimental
2025-04-13
怎么使用gemini
使用 Gemini 的方法如下: 1. 申请 API key:在申请您的 API key,并将其填到 api_key.ini 中。该文件位于插件根目录下,默认名字是 api_key.ini.example,初次使用需将文件后缀改为.ini。用文本编辑软件打开,在 google_api_key=后面填入您的 API key 并保存。 2. 节点选项说明: api:使用的 Api。目前只有"geminiprovision"和"googlegemini"选项。 token_limit:生成提示词的最大 token 限制。 exclude_word:需要排除的关键词。 replace_with_word:替换 exclude_word 的关键词。 3. 使用方式: 通过 API 调用(需要一定技术基础)。 在 Google AI Studio 中使用:这是一个免费的在线平台。 登录方法: 第一步:打开浏览器访问 https://aistudio.google.com/prompts/new_chat 或下载 Gemini 应用(Android 或 iOS)。 第二步:登录您的 Google 账户。 第三步:在 model 选项处选择 Gemini 2.0 Flash Experimental 模型。 操作步骤: 上传图片。 输入指令,例如“把衣服改成蓝色”或者“给狗狗加个墨镜”等清晰明确的描述。 点击运行按钮等待处理结果。若不满意可修改指令再次尝试。 此外,Gemini 还具备实时视频功能,打开完整的 Gemini Live 界面,开启视频流后,界面右下角的按钮可切换到前置摄像头,能实时分析手机摄像头捕捉到的画面并回答相关问题。但此功能会在 3 月下旬作为谷歌 One AI 高级计划的一部分,向 Gemini 高级订阅用户逐步推送。
2025-04-11
阶跃星辰、通义千问、Gemini三个视频理解模型哪个收费更便宜
以下是阶跃星辰、通义千问、Gemini 三个视频理解模型的收费情况: 阶跃星辰:输入价格为 0.005~0.015 元/千 tokens,输出价格为 0.02~0.07 元/千 tokens。 通义千问:Qwenvlplus 模型调用价格为 0.008 元/千 tokens,训练价格为 0.03 元/千 tokens。 Gemini 未提及收费信息。 综上,从已有的信息来看,通义千问的收费相对可能更便宜,但具体还需根据您的使用情况和需求来判断。
2025-04-10
飞书多维表格如何接入gemini?
要将飞书多维表格接入 Gemini,以下是一些相关的操作步骤和说明: 首先,请注意部分操作需要搭配 Google 云服务或自备 API 才可以正常练习,具体内容)。友情提示,从这一部分及以后内容,多数都会是配合代码完成的,如果您是 0 代码学习者,尝试看懂提示词,并在一些 AI 产品上尝试使用。 接下来,课程将深入探讨代码部分。为了运行这个笔记本,需要执行一些设置代码。首先,需要导入 utils 并进行身份验证,这意味着需要设置一些凭证和项目 ID,以便能够从笔记本环境调用云端的 Gemini API。项目包含在云中使用的资源和 Gemini API。这个设置过程确保了笔记本能够正确连接和使用 Gemini 模型。 对于本课程,还需要指定一个区域,即代码将在哪里执行。在这种情况下,使用的是 uscentral1。 接下来,课程将导入 Vertex AI SDK。Vertex AI SDK 可以看作是一个 Python 工具包,帮助用户与 Gemini 交互。通过这个 SDK,可以使用 Python 调用 Gemini API 并获得响应。 在笔记本中,需要初始化 Vertex SDK。这意味着需要告诉 SDK 以下信息: 1. 使用的项目 2. 想要使用 Gemini 模型的区域 3. 用户凭证 通过提供这些信息,Gemini API 就能识别用户身份,并确认用户有权使用 API。 为了使用 Gemini API,需要从 SDK 中导入 generative_model。设置完成后,需要指定具体的模型。这可以通过设置 model 变量来完成,使用刚刚导入的 generative_model,并选择特定的 Gemini 模型。在这个案例中,课程将使用 Gemini 1.0 Pro 版本。这个选择反映了对于当前任务,Gemini Pro 可能是最合适的平衡点,提供了良好的性能和效率。 此外,Gemini 不仅是单一模型,而是一个模型系列,包含不同大小的模型,每种大小都针对特定的计算限制和应用需求而定制。首先是 Gemini Ultra,这是系列中最大和最强大的模型。Gemini Pro 被设计为多功能的主力模型,平衡了模型性能和速度。还有 Gemini Flash,这是一个专门为高容量任务设计的最快、最具成本效益的模型。最后是 Gemini Nano,它是 Gemini 家族中的轻量级成员,专门设计用于直接在用户设备上运行。
2025-03-28
Gemini是用什么训练的
Gemini 是在 Google 的 TPU AI 加速器上训练的,似乎没有使用英伟达的 GPU。Google 还推出了全新的 Cloud TPU v5p 和 AI Hypercomputer 超级计算机,将加速 Gemini 的开发,使 AI 模型的训练更快。 Cloud TPU v5p 是目前 Google 最强大、可扩展和灵活的 AI 加速器。它在 TPU v4 的基础上提供了超过 2 倍的 FLOPS(浮点运算次数/秒)和 3 倍的高带宽内存(HBM)。TPU v5p 可以比前一代 TPU v4 更快地训练大型语言模型(LLM),对于嵌入密集型模型,其训练速度比 TPU v42 快 1.9 倍。TPU v5p 的可扩展性是 TPU v4 的 4 倍。 AI Hypercomputer 是一个突破性的超级计算机架构,它采用了集成的系统,包括性能优化的硬件、开放软件、领先的机器学习框架,以及灵活的消费模型。通过系统级协同设计来提高 AI 训练、调优和服务的效率和生产力。具有性能优化的计算、存储和网络硬件,建立在超大规模数据中心基础设施之上,利用高密度占地面积、液体冷却和 Jupiter 数据中心网络技术。通过开放软件使开发者能够调整、管理和动态编排 AI 训练和推理工作负载。提供了一系列灵活和动态的消费选择,包括传统的承诺使用折扣(CUD)、按需定价和现货定价,以及为 AI 工作负载量身定制的消费模型。 Gemini 模型是在一个既包含多模态又包含多语言的数据集上进行训练的。预训练数据集使用来自网络文档、书籍和代码的数据,并包括图像、音频和视频数据。使用 SentencePiece 分词器,发现在整个训练语料库的大样本上训练分词器可以改善推断的词汇,并进而提高模型性能。对所有数据集进行过滤,使用启发式规则和基于模型的分类器,还进行安全过滤以删除有害内容。从训练语料库中筛选出评估集。在训练过程中进行分阶段训练,通过增加领域相关数据的权重来改变混合组合,直到训练结束。
2025-03-26