Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何在电脑上安装DEEPSEEK

Answer

以下是在电脑上安装 DeepSeek 的步骤:

  1. 访问网址:https://www.deepseek.com/zh 。
  2. 点击开始对话,左边选择代码助手。
  3. 对于 DeepSeek R1 的申请:
    • 申请链接:https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 。
  4. 环境安装(如需要):
    • 若涉及相关开发,可能需要提前安装 Node.JS。
    • 下载地址:https://nodejs.org/zh-cn 。
    • Mac 安装包:Node.js 22.14.0.pkg
    • Windows 安装包:Node.js v22.14.0 x64.msi 。安装时可能需要管理员权限。安装完成后,可打开终端面板输入相关指令查看是否安装成功。

此外,还可以通过以下方式使用 DeepSeek:

  1. 使用网页聊天:
    • 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接安装浏览器插件并添加到拓展程序:https://chromewebstore.google.com/detail/page-assist-%E6%9C%AC%E5%9C%B0-ai-%E6%A8%A1%E5%9E%8B%E7%9A%84-web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。
    • 打开聊天页面,点击右上角的插件列表,找到 Page Assist 插件并点击打开。
    • 配置“DeepSeek-R1”模型的 API key 。
    • 基础 URL:https://ark.cn-beijing.volces.com/api/v3 。填好后点击保存,关掉提醒弹窗。
    • 添加“DeepSeek-R1”模型,即可愉快使用。
Content generated by AI large model, please carefully verify (powered by aily)

References

一起来玩2048:读了元子的Cursor补充

使用cursor可以不用下载上一步中的Pycharm网址:https://www.cursor.com/这个教程很多,通过对话获得代码即可。因为这里面用的是大语言模型Claude3.5sonnet、GPT4o等语言模型,包括我用cursor small也试了,最好是指令更详细一些,比如:我想做个2048游戏,请用上pygame库。。等等[heading4]Deepseek(新手推荐这个,2→3.2→4这样路径)[content]网址:https://www.deepseek.com/zh我们只需要获得游戏代码即可,Deepseek很方便,国内能访问,网页登录很方面,目前完全免费!点击开始对话,左边选择代码助手:直接向神龙许愿吧:[heading4]通义灵码[content]在Pytharm中,“文件”-“设置”-“插件”-红色框位置搜索“通义灵码”(如图:),安装通义灵码插件:(目前免费)[heading4]JetBrains自身的助手插件[content]在Pytharm中,“文件”-“设置”-“插件”-红色框位置搜索“Jetbrains AI assistant”(如图:),安装Jetbrain AI assistant插件:(收费,目前有7天免费试用)[heading4]Marscode及Tencent cloud AI code Assistant等等...[content]见上图绿色部分[heading4]无影的晓颖AI助手[content]在云栖大会上有过使用。晓颖助手内置在云电脑里,无影也是阿里旗下的,晓颖助手的使用很流畅,只是需要在无影的云电脑中。高能力的通用语言大模型通过明确的指令也可以得到python代码,不过我这边使用下来还是Deepseek和晓颖AI助手在生成2048游戏上更为简便准确,这句话仅供参考,不知道大家实践下来有什么新发现可以交流。

AI编程与炼金术:Build on Trae

这一节的有两个步骤:1.申请DeepSeek R1;([羊毛快薅|字节火山上线了DeepSeek系列模型并悄悄更改了模型服务价格...](https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh))2.开发网页;邀请链接:https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA没事,一步步来,很简单[heading2]环境安装:Node.JS[content]本节我们需要的环境里,有Node.JS,需要提前安装一下:这里我们为了方便大家,直接把Mac和Windows版本的安装包下载下来:官网下载:https://nodejs.org/zh-cnMac:[Node.js 22.14.0.pkg](https://bytedance.feishu.cn/space/api/box/stream/download/all/NccKbJYNXoXOxnxAjLvcstJOnef?allow_redirect=1)Windows:[Node.js v22.14.0 x64.msi](https://bytedance.feishu.cn/space/api/box/stream/download/all/G661b9la6o7kxwxEpYmcImZDnfe?allow_redirect=1)注意,安装可能需要管理员权限。安装完成后,可以打开Trae的终端面板复制后输入,来看看是否安装好了:比如我的安装好了之后会提示:

获取字节火山DeepSeek系列 API完整教程,及使用方法,邀请可拿3000万tokens

也可以使用其他插件下面为举例示意使用Chrome或Microsoft Edge浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/page-assist-%E6%9C%AC%E5%9C%B0-ai-%E6%A8%A1%E5%9E%8B%E7%9A%84-web/jfgfiigpkhlkbnfnbobbkinehhfdhndo2、打开聊天页面点击右上角的插件列表,找到Page Assist插件,点击打开。[heading3]3、配置“DeepSeek-R1”模型的API key[content]基础URL:https://ark.cn-beijing.volces.com/api/v3填好之后,点击保存,关掉提醒弹窗。4、添加“DeepSeek-R1”模型。5、可以愉快玩耍,无需担心“服务器繁忙”了,打开联网功能,还可以支持联网搜索使用R1。

Others are asking
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
Deepseek自动生成网站前端页面
以下是关于 DeepSeek 自动生成网站前端页面的相关内容: DeepSeek v3 能力更新后虽能生成炫目的前端页面,但多为静态且实用性有限。可结合飞书多维表格将生成的漂亮前端变为真实的系统,如【智能作业分发系统】。 该系统整体包括用户登陆(可加飞书调查表二维码实现注册)、作业类型、作业详情(含连连看游戏、AI 智能问答、考试系统)。其实现逻辑为用户登陆系统后进入页面看到老师分配的作业分类,选择分类进入作业详情页面,详情页有学习单词发音及三个模块。 对于小白,可用飞书作数据源,通过飞书 API 接口获取内容,用 DeepSeek v3 制作前端+后端(用 Trae 更方便)。获取请求参数时,测试成功后的示例代码中有完整的请求参数和请求体可直接复制使用。创建前后端时,若用 DeepSeek 官网搭建需按代码目录结构创建对应文件(用 Trae 可省略),首次运行可能遇到飞书 API 未正确配置 CORS 导致浏览器拦截请求的问题,V3 会给出修改意见。 此外,Same dev 能像素级复制任意 UI 界面并生成前端代码,支持多种文件格式和技术栈代码,但免费额度消耗快,网站被谷歌标记。360 智脑复现了 DeepSeek 强化学习效果并发布开源模型 LightR114BDS。 AI 时代生存法则:会提需求比会写代码更重要,会开脑洞比会复制粘贴更值钱,真正的大佬都是让 AI 当乙方!
2025-04-13
deepseek写论文
以下是关于 DeepSeek 在不同方面应用的相关信息: 应用场景:包括脑爆活动方案、会议纪要、批量处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、写论文、写文案、写小红书笔记、写周报、做设计头脑风暴、做网站、分析感情问题等。 优势与不足:在写文方面全面领先,但长文可能太发散、文风用力过猛导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 应对策略:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成;用 O1 模型对创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 创作相关:模仿特定小说家的文学方式创作小说,需在提示词中描述文风特征;邀请大家在腾讯频道发布用 AI 写的小说并鉴赏。 发展历程:DeepSeek 历时 647 天在大语言模型(LLM)领域取得突破,发布 13 篇论文。谷歌 CEO 坦言 Deep Seek 的突破标志着 AI 的全球化进程。
2025-04-13
使用Deepseek写论文有哪些固定指令模板
以下是使用 DeepSeek 写论文的一些指令模板: 1. 进阶控制技巧: 思维链引导: 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 知识库调用: 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 多模态输出 2. 高级调试策略: 模糊指令优化: 问题类型:宽泛需求 修正方案:添加维度约束 示例对比:原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 问题类型:主观表述 修正方案:量化标准 示例对比:原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 迭代优化法: 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 3. 核心原理认知: AI 特性定位: 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 8K tokens 上下文窗口,换算成汉字是 4000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 系统响应机制: 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 4. 基础指令框架: 四要素模板 格式控制语法: 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 5. 高阶能力调用: 文风转换矩阵: 作家风格移植:“用鲁迅杂文风格写职场 PUA 现象” 文体杂交:“将产品说明书改写成《史记》列传格式” 学术口语化:“把这篇论文摘要翻译成菜市场大妈能听懂的话” 领域穿透技术:行业黑话破解→“解释 Web3 领域的‘胖协议瘦应用’理论” 商业决策支持 6. 场景化实战策略: 创意内容生成 技术方案论证 7. 效能增强技巧: 对话记忆管理: 上下文锚定:“记住当前讨论的芯片型号是麒麟 9010” 信息回溯:“请复述之前确认的三个设计原则” 焦点重置:“回到最初讨论的供应链问题” 输出质量控制: 问题类型:过度抽象 修正指令:“请具体说明第三步操作中的温度控制参数” 问题类型:信息过载 修正指令:“用电梯演讲格式重新组织结论” 问题类型:风格偏移 修正指令:“回归商务报告语气,删除比喻修辞” 8. 特殊场景解决方案: 长文本创作: 分段接力法:“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应” 敏感内容处理: 概念脱敏法:“用经济学原理类比说明网络审查机制” 场景移植法:“假设在火星殖民地讨论该议题”
2025-04-13
自动化控制电脑
以下是关于自动化控制电脑的相关信息: Google 正在开发名为“Project Jarvis”的 AI 项目,预计年底亮相。该项目旨在实现 AI 自动化操作 Chrome 浏览器中的任务,借助升级版 Gemini 2.0。“Jarvis”作为 Chrome 扩展短暂曝光,可作为上网伴侣,帮助用户完成自动化任务,通过截图分析屏幕内容,使用 Gemini 2.0 模型决定执行操作,例如预订餐厅或下单,预计将在 Gemini 2.0 发布后上线,可能在下个月。 目前没有更多关于自动化控制电脑的其他详细内容。
2025-04-10
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
ten可以安装在电脑里,然后电脑上可以看视频进行实时翻译吗?这个功能可以怎么去实现?
目前 Ten 不太明确是指何种具体的软件或工具。一般来说,如果您想在电脑上实现观看视频实时翻译的功能,可以考虑使用以下几种常见的方法: 1. 利用浏览器插件:例如谷歌浏览器的某些翻译插件,能够在您观看在线视频时提供翻译服务。 2. 专业的翻译软件:部分专业的翻译软件具备屏幕取词和实时翻译视频的功能。 3. 操作系统自带的功能:某些操作系统可能提供了相关的辅助功能来实现类似的效果。 但需要注意的是,不同的方法可能在翻译的准确性、支持的语言种类以及适用的视频平台等方面存在差异。
2025-03-25
如何让AI全自动操控电脑完成我的工作
目前,AI 在操控电脑方面已经有了一些进展。例如,OpenAI 发布了 Responses API 和一整套 Agent 创建工具,其中包括模拟人类操作电脑的 ComputerUsing Agent ,支持跨平台和本地部署。同时,OpenAI 还推出了实时监控功能,能够记录 AI 的完整操作路径,跟踪决策依据、使用工具与执行步骤,有助于调试与优化 AI 流程。 在实际应用中,普通人可以利用 AI 生成个人艺术照、证件照、绘本图像、视频,甚至创作音乐和歌曲。比如在快手的可灵 AI 网站上能看到大量视频生成的效果和相关命令词。此外,AI 数字人技术在直播和视频平台中已被大量使用,8 岁小女孩能在 AI 编程助手帮助下独立完成网站程序开发。 然而,要实现 AI 全自动操控电脑完成您的工作,还面临一些挑战和限制。一方面,AI 技术仍在不断发展和完善中,其能力和准确性可能存在一定的局限性。另一方面,法律法规对于 AI 的应用也有一定的规范和约束。 但随着技术的进步,未来 AI 在操控电脑完成工作方面有望取得更大的突破。
2025-03-24
一个从来没有接触过AI技术的、电脑方面就会打字的人怎么学习AI及应用
对于从未接触过 AI 技术但会打字的新手,以下是学习 AI 及应用的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,如果您想深入了解 AI 的技术历史和发展方向,以及目前最前沿的技术点,有以下学习路径: 1. 偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-22
我想学AI编程,用的电脑系统是WIN7,好多编程软件装不了吧,给我个建议
如果您使用的是 WIN7 系统且想学习 AI 编程,由于很多编程软件可能不支持该系统,以下是一些建议: 1. 考虑升级您的操作系统至 Windows7 以上版本,如 Windows10 或 Windows11,以获得更好的兼容性和支持。 2. 对于电脑硬件,系统要求 Windows7 以上,显卡要求为 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有足够的空间,最低 100G 起步(包括模型)。 3. 下载并更新 Nvidia 显卡驱动,下载地址:https://www.nvidia.cn/ geforce/drivers/ 4. 下载并安装所需环境,包括 Python、Git、VSCode: 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 安装 Git:https://gitscm.com/download/win 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 请注意,Mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但可能功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2025-03-20
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
trae如何安装
以下是 Trae 的安装步骤: 1. 由于 Trae AI 官网部署在海外,且其本身需要使用海外的大模型,所以需要通过 VPN 等方式科学上网。 2. 在官网(https://www.trae.ai/download)直接点击下载,Trae 会自动识别您的电脑芯片。 3. 下载完成后,如果是 Mac 系统,将左侧的 Trae 应用拖动到右侧的文件夹内;如果是 Windows 系统,双击 Trae 图标,即可完成安装。 4. 安装完成后,点击图标启动,进行以下简单设置: 选择主题背景和默认语言,可选择中文。 对于提供的 Cursor、VS Code 等其他 AI 编程工具的配置和插件迁移,如果是第一次使用类似工具,可直接点“Skip”选项。 对于不理解意思的设置,直接点“Skip”选项。 5. 选择合适的登录方式,登录方式包括 Google 账号登录、Github 账号登录、邮箱登录。如果没有账号,可新注册一个账号。推荐有余力的用户访问 Github 官网(https://github.com/)注册。 注意:Trae 仅在部分地区可用,可能需要开启科学上网。登录完之后,若出现“App Unavailable”提示,可能是所在地区不可用,此时需要开启科学上网。网页登录成功之后可以把科学上网关掉。
2025-04-08
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27