Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI infra是什么意思?

Answer

AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。

例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。

在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。

Content generated by AI large model, please carefully verify (powered by aily)

References

ProductHunt 2023 年度最佳产品榜单

随着越来越多的AI模型和产品的出现,帮助构建、改进和监控它们的工具变得比以往任何时候都更加重要,因此几年的奖项又出现了一个新的类别。这个类别的入围者帮助AI创作,者为他们的产品选择合适的AI API并在它们之间切换(如EdenAI)、快速创建和部署LLM插件(如Langdoc)或LLM应用程序(如LLM Spark),以及追踪和调试复杂的LLM应用程序(如Langfuse)。Langfuse(免费可用)——大模型应用的开源追踪和分析工具:Langfuse为大模型应用提供开源可观测性和分析功能。可观测性:在可视化界面中探索和调试复杂的日志和追踪。分析:使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。Eden AI(免费可用)——将顶尖AI API融合为一:将Eden AI集成到产品中,实现以下目标:通过为每项AI任务选择正确的AI API来提高准确性和降低成本通过集中管理使用限制和成本监测,让你更加放心不断探索市场上新兴的AI能力。Langdock(免费可用)——在几分钟内创建、部署、测试和监控ChatGPT插件:将你的API连接到Langdock,并将其作为插件部署到所有大模型应用中,如ChatGPT和LangChain(Bing和Bard即将推出)。然后使用Langdock内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。LLM Spark(免费可用):用于构建生产就绪大模型应用的开发平台。

赛博月刊@25年1月:AI行业大事记

生成大模型3.0专注于高质量图像和视频的生成,不仅显著提升了生成内容的质量和可控性,还降低了计算成本。理解大模型1.0则强化了对图像和视频的时空建模与解析能力,实现了对图像视频和内容更精细、更准确的理解。使用入口:前往官网(hidreamai.com)体验。锐评(by Jomy)→可灵的竞品[?官方介绍](https://mp.weixin.qq.com/s/vw_rl8QdhG78VG8QC-UukA)[heading4]【3D】影眸科技●Rodin Gen-1.5 3D生成工具[content]Rodin Gen-1.5能够生成高质量、高精度的3D模型,尤其在CAD类工业模型和硬表面模型方面表现出色,有效解决了行业内长期存在的薄面和边缘锐度问题。使用入口:前往官网(Hyper3D.ai)体验。实测效果中规中矩。https://x.com/DeemosTech/status/1873752612832788546[heading4]【融资】硅基流动●完成亿元人民币Pre-A轮融资[content]硅基流动(SiliconFlow)已于2024年底完成亿元人民币Pre-A轮融资,由华创资本领投,普华资本跟投,老股东耀途资本继续超额跟投,华兴资本担任独家财务顾问。此次融资将加速硅基流动的AI云基础设施升级与商业化拓展。硅基流动成立于2023年8月,致力于打造大模型时代的AI基础设施(AI Infra)平台,通过算法、系统与硬件的协同创新,跨数量级降低AI应用的开发和使用门槛,加速AGI普惠人类。[?官方介绍](https://mp.weixin.qq.com/s/NyStkbw_JgTulQ-RiA2V4A)

【法律法规】《人工智能法案》2023.06.pdf

Text proposed by the CommissionAmendment(44h)‘critical infrastructure’means an asset,a facility,equipment,a network or a system,or a part of an asset,a facility,equipment,a network or a system,which is necessary for the provision of an essential service within the meaning of Article 2(4)of Directive(EU)2022/2557;Amendment(44k)‘social scoring’means evaluating or classifying natural persons based on their social behaviour,socio-economic status or known or predicted personal or personality characteristics;Amendment(44l)‘social behaviour’means the way a natural person interacts with and influences other natural persons or society;Amendment(44m)‘state of the art’means the developed stage of technical capability at a given time as regards products,processes and services,based on the[heading2]Amendment 211[heading2]Proposal for a regulation Article 3–paragraph 1[content]Text proposed by the Commission[heading2]Amendment 212[heading2]Proposal for a regulation Article 4[content]Text proposed by the Commission[heading3]Article 4[heading3]Amendments to Annex I[content]The Commission is empowered to adopt delegated acts in accordance with Article 73 to amend the list of techniques and approaches listed in Annex I,in order to update that list to market and technological developments on the basis of characteristics that are similar to the techniques and approaches listed therein.[heading2]Amendment 213

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
AI Infra 有哪些
AI Infra 主要包括以下方面: 1. 入围的相关工具和服务: Langfuse:大模型应用的开源追踪和分析工具,提供开源可观测性和分析功能,包括在可视化界面中探索和调试复杂的日志和追踪,以及使用直观的仪表板改善成本、降低成本、减少延迟,提高响应质量。 Eden AI:将顶尖 AI API 融合为一,通过为每项 AI 任务选择正确的 AI API 来提高准确性和降低成本,通过集中管理使用限制和成本监测让用户更加放心,并不断探索市场上新兴的 AI 能力。 Langdock:在几分钟内创建、部署、测试和监控 ChatGPT 插件,将 API 连接到 Langdock,并将其作为插件部署到所有大模型应用中,然后使用内置的测试功能来确保一切按预期工作,并在插件扩展时进行监控。 LLM Spark:用于构建生产就绪大模型应用的开发平台。 2. 基础设施成本的演变:目前模型参数和 GPU 计算能力呈指数级增长,但这种趋势是否持续尚不清楚。 3. 基础设施的考虑因素: 外部与内部基础设施的选择:许多创业公司,尤其是应用公司,在成立初期无需建立自己的 AI 基础设施,可采用托管模型服务,如 OpenAI、Hugging Face(针对语言)和 Replicate(针对图像生成)等,这些服务定价基于消费量,通常比运行单独的基础设施更便宜。而一些训练新的基础模型或构建垂直集成 AI 应用程序的公司,则可能需要直接在 GPU 上运行自己的模型,管理基础设施可成为竞争优势的来源。
2025-02-06
AI Infra 市场未来的想象空间
在生成式 AI 革命进入第二个年头时,研究从迅速生成预训练结果的“快速思考(System 1)”转向推理过程中深度思考的“慢速思考(System 2)”,为全新自主型应用程序开启大门。自《生成式 AI:一个创意新世界》发表的两年间,AI 生态系统变化巨大,也有了新预测。生成式 AI 市场基础层趋于稳定,由 Microsoft/OpenAI、AWS/Anthropic、Meta 和 Google/DeepMind 等重要玩家和联盟主导,形成平衡态,只有具备经济实力和巨额资本的玩家仍在竞争,市场结构逐渐明朗,未来生成下一个 token 的成本会降低,数量会增多。随着大规模语言模型(LLM)市场稳定,竞争前沿转向以“系统 2”思维主导的推理层开发和扩展,受 AlphaGo 等模型启发,旨在让 AI 系统进行深思熟虑的推理和问题解决,新的认知架构和用户界面也在改变推理能力与用户的互动方式。 综上所述,对于 AI Infra 市场未来的想象空间,其可能在推理层的开发和扩展方面有更多的发展和创新,市场结构会进一步优化,成本降低和数量增加的趋势也将持续。
2024-11-01
AI infra
以下是关于“AI infra”的相关信息: AI 模型的计算成本: GPT3 约有 1750 亿个参数,对于 1024 个令牌的输入和输出,计算成本约为 350 万亿次浮点运算。训练像 GPT3 这样的模型需要约 3.14×10^23 次浮点运算,其他模型如 Meta 的 LLaMA 有更高的计算要求。训练此类模型是人类迄今计算量最大的任务之一。AI 基础设施昂贵的原因在于底层算法问题计算难度极大,相比之下,对一百万个条目的数据库表进行排序的算法复杂性微不足道。因此,应选择最小的模型来解决具体用例。同时,根据变换器的经验法则,可轻松估计特定大小模型的算力和内存消耗,进而选择合适的硬件。 Generative AI 的开发工具和基础设施的趋势: 有一张图描绘了其趋势,代表了在 AI 开发领域中,为满足不同需求,工具和基础设施正逐渐模块化和专业化。图中的公司被分为四个主要类别: 1. Orchestration(编排):如 DUST、FIAVIE、LangChain 等公司提供的工具帮助开发人员管理和协调各部分和任务,确保系统流畅运行。 2. Deployment, Scalability, & PreTraining(部署,可扩展性和预训练):如 UWA mosaicm、NMAREL、anyscale 等公司提供工具,帮助开发人员部署模型,保证模型的可扩展性,以及进行预训练。 3. Context & Embeddings(上下文和嵌入):如 TRUDO,Llamalndex,BerriAI 等公司提供工具,帮助模型处理和理解语言上下文,以及将词语和句子转化为计算机可理解的形式。 4. QA & Observability(质量保证和可观察性):如 Pinecone,drant,Vald 等公司提供工具,确保模型表现,并能监控模型的性能和状态。 AI 基础设施的考虑因素: 一些创业公司,尤其是训练新的基础模型或构建垂直集成 AI 应用程序的公司,不可避免直接在 GPU 上运行自己的模型。这要么是因为模型本身就是产品,团队正在寻找“模型市场契合度”,要么是因为需要对训练和/或推理进行细粒度的控制,以实现某些功能或大规模降低边际成本。无论哪种方式,管理基础设施都可以成为竞争优势的来源。
2024-08-22
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于一些原因被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。
2025-04-10
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),通常指一种能够完成任何聪明人类所能完成的智力任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 是朝着 AGI 迈出的巨大一步。Sam Altman 认为确保 AGI 造福全人类是使命,人工通用智能是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-04-10
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
agi 是什么意思
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 部分人认为大语言模型(LLM)具有 AGI 潜力,例如 ChatGPT 背后的技术,而 LeCun 反对这一观点。 OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-26
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。像 ChatGPT 这样的产品就是由致力于 AGI 的 OpenAI 研发的。同时,Sam Altman 也认为确保 AGI 造福全人类是重要使命,AGI 可以被看作是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-03-22
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21