本地部署大模型的硬件配置如下:
需要注意的是,最低配置可能运行速度非常慢。对于 SDXL 大模型的本地部署,其分为两个部分,base + refiner 是必须下载的,还有一个配套的 VAE 模型用于调节图片效果和色彩。要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上,然后将模型放入对应的文件夹中。对于通义千问的 Qwen2.5 - 1M 模型的本地部署,使用以下命令启动服务时要根据硬件配置进行设置,如设置 GPU 数量、最大输入序列长度、Chunked Prefill 的块大小、限制并发处理的序列数量等。如果遇到问题,可参考相关的 Troubleshooting 内容。与模型交互可以使用 Curl 或 Python 等方法,对于更高级的使用方式,可以探索如 Qwen - Agent 之类的框架。
所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM+4G VRAM建议配置:16G RAM+8G VRAM理想配置:32G RAM+24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM+4G VRAM建议配置:32G RAM+12G VRAM生成音频大模型最低配置:8G VRAM+建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。这是这篇文章的第二次修改,我专门加的这段。原因就是因为好多小伙伴看了文章之后兴致冲冲的去实验,结果发现电脑根本带不动。但是这并不妨碍我们去手把手实操一遍,因为实操可以加深我们对大模型构建的知识库底层原理的了解。如果你想要私滑的体验知识库,可以参考我的另一篇文章:[胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)好了,废话不多说,下面教程还是值得亲自上手搞一遍的,相信走完一遍流程后,你会对知识库有更深的理解。
SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!
使用以下命令启动服务,根据你的硬件配置进行设置:参数说明:--tensor-parallel-size设置为您使用的GPU数量。7B模型最多支持4个GPU,14B模型最多支持8个GPU。--max-model-len定义最大输入序列长度。如果遇到内存不足问题,请减少此值。--max-num-batched-tokens设置Chunked Prefill的块大小。较小的值可以减少激活内存使用,但可能会减慢推理速度。推荐值为131072,以获得最佳性能。--max-num-seqs限制并发处理的序列数量。如果遇到问题,请参考[Troubleshooting](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M#troubleshooting)相关内容。[heading3]4.与模型交互[content]你可以使用以下方法与部署的模型进行交互:选项1.使用Curl选项2.使用Python其他选项对于更高级的使用方式,可以探索如[Qwen-Agent](https://github.com/QwenLM/Qwen-Agent/tree/main)之类的框架。Qwen-Agent使模型能够读取PDF文件或获得更多功能。