以下是 Liblibai 的使用教程:
简明操作流程:
概念与功能说明:
其他概念:
定主题:你需要生成一张什么主题、什么风格、表达什么信息的图。(没错我是喜欢看plmm多点)选择Checkpoint:按照你需要的主题,找内容贴近的checkpoint。一般我喜欢用模型大佬麦橘、墨幽的系列模型,比如说麦橘写实、麦橘男团、墨幽人造人等等,效果拔群。选择lora:在你想要生成的内容基础上,寻找内容重叠的lora,帮助你控制图片效果及质量。可以多看看广场上做得好看的帖子里面,他们都在用什么lora。设置VAE:无脑选840000那一串就行。CLIP跳过层:设成2就行。Prompt提示词:用英文写你想要AI生成的内容,不用管语法也不要写长句,仅使用单词和短语的组合去表达你的需求。单词、短语之间用英文半角逗号隔开即可。负向提示词Negative Prompt:用英文写你想要AI避免产生的内容,也是一样不用管语法,只需单词和短语组合,中间用英文半角逗号隔开。采样方法:这玩意儿还挺复杂的,现在一般选DPM++2M Karras比较多。当然,最稳妥的是留意checkpoint的详情页上,模型作者是否有推荐采样器,使用他们推荐的采样器会更有保障迭代步数:要根据你采样器的特征来,一般我选了DPM++2M Karras之后,迭代步数在30~40之间,多了意义不大还慢,少了出图效果差。尺寸:看你喜欢,看你需求。生成批次:默认1批。
1.迭代步数:AI调整图片内容的次数。步骤越多,调整越精密,出图效果理论上更好,生图耗时越长。但是并非越多越好,效果的提升非线性,多了以后效果的增长曲线就放平并开始震荡了。1.尺寸:图片生成的尺寸大小。太小了AI生成不了什么内容,太大了AI开始放飞自我。如果你要高清图,可以设置中等的尺寸并用高分辨率修复(以后再学也行)。1.生成批次:用本次设置重复生成几批图。2.每批数量:每批次同时生成的图片数量。3.提示词引导系数:指图像与prompt的匹配程度。数字增大将导致图像更接近你的提示,但过高会让图像质量下降。4.随机数种子:生成的每张图都有随机数种子,在固定好种子以后,可以对图片进行“控制变量”效果的操作,比如说修改提示词、修改clip跳过层等等。如果你第二次生图用来上张图的种子,但是其他设置都不改,就会出一样的图片。(注意,第一次生成图的时候是还没有种子的,不用管,空着就行)5.ADetailer:面部修复插件,治愈脸部崩坏的超强小工具,高阶技能,后面再学。6.ControlNet:控制图片中一些特定的图像,可以用于控制人物姿态,或者是生成特定文字、艺术化二维码等等。也是高阶技能,后面再学不迟。7.重绘幅度:图生图时用到的,重绘幅度越大,输出的图和输入的图差别就越大。
1.首页-模型广场:发布了其他大手子炼成的模型。如你所见,收藏和运行数(被其他用户来生图的次数)较多的模型都在首页前排,点击后可以看模型的详细信息,将模型加入模型库可用于今后生图时的快速调用。模型详情信息的下方,是用这个模型生成的图片,俗称返图区。1.Checkpoint:生图必需的基础模型,任何生图操作必须要选定一个checkpoint模型才能开始操作。注意,checkpoint区别于lora,这两个东西在模型广场都是混着展示的。checkpoint必选,lora可选可不选,任何主题的作图需求,都可以试着在模型广场上搜索或者浏览,然后收集到模型库中用于生图。1.lora:低阶自适应模型,你可以理解为checkpoint的小插件,生图的时候lora可有可无。但是lora的价值还是很明显的,基本上你看到一些精细的控制,如面部、材质、物品等等细节都常见于用相应的lora进行控制。这个也是可以加入模型库的。1.VAE:是个编码器,功能类似于我们熟悉的滤镜,调整生图的饱和度。无脑选择右侧截图中840000这个即可。1.CLIP跳过层:可以用于在生成图片之后控制、调整构图变化,一般设成2就行了,早期不用花太多精力在这里。1.Prompt提示词:想要AI生成的内容(不绝对有效,需要从入门阶段就费功夫学习,哪怕从照抄别人开始)。2.负向提示词Negative Prompt:想要AI避免产生的内容(不绝对有效,也需要费功夫学,哪怕从照抄别人开始)。1.采样方法:使用何种采样器,通俗说就是让AI用什么算法生图。