Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有哪些支持超长上下文的大模型

Answer

以下是一些支持超长上下文的大模型:

  • Scout:支持 1000 万上下文,适合处理超长文本和复杂推理任务。
  • Maverick:具有 100 万上下文,长记忆优势适配多场景替代 RAG。
  • Behemoth:2 万亿参数级别的大模型在训,已超越 GPT-4.5 在 STEM 表现。
  • Claude-2-100k 模型的上下文上限是 100k Tokens,即 100000 个 token。
  • ChatGPT-16k 模型的上下文上限是 16k Tokens,即 16000 个 token。
  • ChatGPT-4-32k 模型的上下文上限是 32k Tokens,即 32000 个 token。

需要注意的是,token 限制同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入不能超过规定的 token 数量,而且随着对话的进行,当达到上限时,会遗忘最前面的对话内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

支持文本+图像+视频输入,采用early fusion技术整合多模态数据Scout:支持1000万上下文,适合处理超长文本和复杂推理任务Maverick:100万上下文,长记忆优势适配多场景替代RAGBehemoth:2万亿参数级别的大模型在训,已超越GPT-4.5在STEM表现?[https://x.com/imxiaohu/status/1908708194312229083](https://x.com/imxiaohu/status/1908708194312229083)详细介绍及评测:?[https://www.xiaohu.ai/c/xiaohu-ai/meta-llama-4-1000](https://www.xiaohu.ai/c/xiaohu-ai/meta-llama-4-1000)4⃣️?Luma Ray2推出20+专业相机运动功能:文本即可操控专业级镜头运动,如Dolly Zoom、Orbit、Crane等所有镜头支持自由组合,实现复杂动态视觉效果可调节运动角度、速度和方向,适合广告片和电影级创作?[https://x.com/imxiaohu/status/1908714140400791555](https://x.com/imxiaohu/status/1908714140400791555)功能详细介绍:?[https://www.xiaohu.ai/c/xiaohu-ai/luma-ray2-20](https://www.xiaohu.ai/c/xiaohu-ai/luma-ray2-20)

XiaoHu.AI日报

支持文本+图像+视频输入,采用early fusion技术整合多模态数据Scout:支持1000万上下文,适合处理超长文本和复杂推理任务Maverick:100万上下文,长记忆优势适配多场景替代RAGBehemoth:2万亿参数级别的大模型在训,已超越GPT-4.5在STEM表现?[https://x.com/imxiaohu/status/1908708194312229083](https://x.com/imxiaohu/status/1908708194312229083)详细介绍及评测:?[https://www.xiaohu.ai/c/xiaohu-ai/meta-llama-4-1000](https://www.xiaohu.ai/c/xiaohu-ai/meta-llama-4-1000)4⃣️?Luma Ray2推出20+专业相机运动功能:文本即可操控专业级镜头运动,如Dolly Zoom、Orbit、Crane等所有镜头支持自由组合,实现复杂动态视觉效果可调节运动角度、速度和方向,适合广告片和电影级创作?[https://x.com/imxiaohu/status/1908714140400791555](https://x.com/imxiaohu/status/1908714140400791555)功能详细介绍:?[https://www.xiaohu.ai/c/xiaohu-ai/luma-ray2-20](https://www.xiaohu.ai/c/xiaohu-ai/luma-ray2-20)

关于 token 你应该了解……

从官方文档可以看到我们目前使用的模型有哪些,以及每个模型的token限制。除此之外,最直观能感受到各类模型token限制的其实是poe:在这里我们看到的16K、32K、100K就是指token上限。Claude-2-100 k模型的上下文上限是100k Tokens,也就是100000个tokenChatGPT-16 k模型的上下文上限是16k Tokens,也就是16000个tokenChatGPT-4-32 k模型的上下文上限是32k Tokens,也就是32000个token但似乎很多小伙伴不理解这个限制具体影响在哪些方面。所以我替你们问了一下GPT(真不懂你们为什么不自己问/手动狗头)从回答可以看出,这个token限制是同时对下述两者生效的:1、一次性输入2、一次对话的总体上下文长度,值得注意的是这个长度不是达到上限就停止对话,而是遗忘最前面的对话,你可以理解为鱼的记忆只有7秒,第8秒的时候他会忘记第1秒的事,第9秒的时候……(某些同学是不是恍然大悟了)

Others are asking
如何让AI总结超长文本
以下是让 AI 总结超长文本的一些方法和策略: 1. 对于需要进行很长对话的应用,可对前面的对话进行总结或筛选。当输入大小达到预定阈值长度时,触发总结部分对话的查询,或将先前对话的总结作为系统消息包含在内,也可在后台异步总结。 2. 对于超长文档,如一本书,可以使用一系列查询来总结文档的每一部分,然后将部分总结连接并再次总结,递归进行直至完成整个文档的总结。在总结某一点内容时,可包括前文的运行总结。 3. 除聊天内容外,还能让 AI 总结各种文章(不超过 2 万字),直接全选复制全文发送给 GPT 即可。 4. 对于 B 站视频,可利用视频字幕进行总结。若视频有字幕,可安装油猴脚本获取字幕,然后复制发送给 AI 执行总结任务。 5. 在当今世界,大型语言模型可用于概括文本,如在 Chat GPT 网络界面中操作。还可针对不同情况,如文字总结、针对某种信息总结、尝试“提取”而非“总结”、针对多项信息总结等。
2025-02-06
你好我需要一个AI对话总结撰写文字的AI,要求必须超长文本理解,文笔很棒
以下为您推荐两款具备超长文本理解能力且文笔不错的 AI 对话产品: 1. Kimi: 显著特点是拥有超长上下文能力,最初支持 20 万字上下文,现已提升至 200 万字。对于处理长文本或大量信息的任务具有巨大优势,能帮助从事文案工作、处理大量文字或文件的用户更有效地处理和分析信息,提高工作效率,对需要长期记忆或参考大量背景信息的任务尤其有用。 不足之处在于文字生成和语义理解、文字生成质量方面可能不如国内其他产品好,且不支持用户自定义智能体。但仍推荐给刚入门 AI 的朋友。 2. 智谱清言: 其背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。 产品设计对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的公司之一,在智能体开发和模型优化方面积累了丰富经验和技术,在逻辑推理和处理复杂提示词方面表现出明显优势,处理需要深度思考和分析的任务时表现出色。
2024-10-24
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
目前支持上下文长度最长的是什么AI
目前支持上下文长度较长的 AI 有以下几种: Kimi:是国内最早支持 20 万字无损上下文的 AI,现在已提升到 200 万字,对长文理解表现出色,适合处理长文本或大量信息的任务,但在文字生成和语义理解、文字生成质量方面可能不如国内其他产品,且不支持用户自定义智能体。 http://X.AI 发布的 Grok1.5:支持 128k 上下文长度,性能翻倍,在 MATH、HumanEval、GSM8K、MMLU 测试中表现出色。 AI21 发布的 Jamba:创新的 SSMTransformer 架构,支持 256K 上下文长度,结合 Joint Attention 和 Mamba 技术,提升长上下文吞吐量。
2025-03-17
我在写小说,怎么让AI在写作时能很好地根据整体故事情节和上下文进行故事的展开和描写
以下是一些让 AI 在写作小说时能很好地根据整体故事情节和上下文进行故事展开和描写的方法: 1. 创作穿越故事的 Prompt 时,明确以下内容: 标题:“generate:小说的标题” 设置:“generate:小说的情景设置细节,包括时间段、地点和所有相关背景信息” 主角:“generate:小说主角的名字、年龄、职业,以及他们的性格和动机、简要的描述” 反派角色:“generate:小说反派角色的名字、年龄、职业,以及他们的性格和动机、简要的描述” 冲突:“generate:小说故事的主要冲突,包括主角面临的问题和涉及的利害关系” 对话:“generate:以对话的形式描述情节,揭示人物,以此提供一些提示给读者” 主题:“generate:小说中心主题,并说明如何在整个情节、角色和背景中展开” 基调:“generate:整体故事的基调,以及保持背景和人物的一致性和适当性的说明” 节奏:“generate:调节故事节奏以建立和释放紧张气氛,推进情节,创造戏剧效果的说明” 其它:“generate:任何额外的细节或对故事的要求,如特定的字数或题材限制” 根据上面的模板生成为特定题材小说填充内容,并分章节,生成小说的目录。 2. 接下来,让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。 3. 可以让 AI 以表格的形式输出细节描述。这样做有三个好处: 打破 AI 原本的叙事习惯,避免陈词滥调。 按编号做局部调整很容易,指哪改哪,别的内容都能够稳定保持不变。 确保内容都是具体的细节,避免整段输出时缩减导致丢光细节只有笼统介绍。 4. 把生成的表格依次复制粘贴,让 AI 照着写文章,偶尔根据需要给 AI 提供建议。 5. 注意小说大赛的要求,如最后的作品必须是 AI 直接吐出来的,不能有任何改动,不能超过规定字数等。如果需要修改,可能会遇到像 GPT4 记性不好或 Claude 改掉关键情节等问题。
2025-01-26
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
ai能够回复多少内容和它的上下文限制有关吗
AI 能够回复的内容与其上下文限制有关。 首先,上下文在英文中通常翻译为“context”,指的是对话聊天内容前、后的信息。使用时,上下文长度和上下文窗口都会影响 AI 大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 不同的 AI 平台有不同的限制方式。例如,Claude 基于 token 限制上下文,简单理解就是每次和 AI 对话,所有内容字数加起来不能太多,如果超过了,它就会忘记一些内容,甚至直接提示要另起一个对话。ChatGPT 则限制会话轮数,比如在一天之中,和它会话的次数有限制,可能 4 个小时只能说 50 句话。 应对这些限制的策略包括将复杂任务分解为小模块、定期总结关键信息以及在新会话中重新引入重要上下文。
2024-11-15
回复限制和上下文限制是一样的吗
回复限制和上下文限制不是一样的概念。 上下文(英文通常翻译为 context)指对话聊天内容前、后的内容信息。使用时,上下文长度限制了模型一次交互中能够处理的最大 token 数量,而上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。 回复限制通常是指对模型生成回复内容的各种约束条件,例如让模型基于一个固定知识片段去回复内容,为避免模型产生幻觉而对提示词进行优化,将 Constraints 前置以更好地控制模型行为。例如在一些测试中,会出现模型在没有上下文时不回复,按照提供的知识准确回复但透露原文,知识片段大小影响回复,以及有错误知识片段时不回复等情况,这表明模型在处理用户输入时会进行一定程度的推理和验证,生成回复时会考虑多种因素,包括上下文的准确性、问题的合理性以及模型内部的约束机制等。
2024-11-15
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
生成设计图:包括图书馆静音舱+小组讨论舱 :用隔音板材划分独立空间,舱体外壳由学生绘制抽象艺术图案。 可变形桌椅 :定制模块化桌椅,支持拼合为“创作大桌”或独立卡座,适配小组作业与个人学习。 艺术疗愈角 :设置减压涂鸦墙、小型绿植温室,配备舒缓音乐耳机。
以下是为您提供的关于生成您所需设计图的相关信息: 星流一站式 AI 设计工具具有入门模式和高级模式。 入门模式: 可以使用图像控制功能精准控制生成图像的内容和风格,如空间关系、线稿、人物长相、姿势等。 只能使用以下四种参考功能: 全部图片参考功能,包括原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割等。 原图、SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。 高级模式: 点击生成器下方的切换按钮进行切换。 与入门模式相比增加了高级模式框架。 基础模型方面,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5。 图片参考方面,允许使用更多的图像控制功能,在星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法会影响图像放大后的图像质量,建议默认即可。 重绘幅度与初步生成的图像的相似度有关。 其他参数默认即可,参数方面允许调整更多的高级参数。 采样器方面,采样方法决定了模型在生成图像过程中的出图质量,有些采样器在细节处理上表现更佳比如 DPM++2M,而有些则在生成速度上更快,比如 Euler。 采样步数一般来说,步数越多,模型对图像的生成和优化越充分,但同时也会增加生成时间。 随机种子是文生图的随机数种子,通过设置相同的随机数种子,可以确保在相同的参数配置下生成相同的图像。 CFG Scale 控制生成图像与提示词一致性的重要参数。 具有脸部/手部修复功能,利用算法对人像的脸部或者手部进行修复。 此外,学生使用项目化的方式分析现状,做问卷调查,数据分析,在 ChatGPT 的帮助下设计出优化过的设计图,然后使用 3D 的空间设计软件设计出来 3D 的设计图。比如有孩子为优化老师家访路线提出做一个软件产品的案例。
2025-03-23
支持Mac的AI助手,能支持自定义大模型和智能体
以下是为您提供的支持 Mac 且能支持自定义大模型和智能体的 AI 助手相关信息: 在网站上增加一个 AI 助手: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以输入一些 Prompt 来设置人设。 在页面右侧提问验证模型效果,点击右上角的发布。 2. 获取调用 API 所需的凭证: 在我的应用>应用列表中查看所有百炼应用 ID 并保存到本地。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存到本地。 本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG: 1. Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 2. 它提供了模型库,用户可从中下载不同模型,也支持自定义模型,例如修改模型的温度参数或设置特定系统消息,还提供了 REST API 用于运行和管理模型以及与其他应用程序的集成选项。 3. Ollama 社区贡献丰富,有多种集成插件和界面。安装时访问 https://ollama.com/download/ ,安装完后在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动,可通过 ollama list 确认。 智能体应用的相关介绍: 大模型存在无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等局限性,为提升用户体验和增强业务竞争力,越来越多的企业构建 AI 助手。智能体应用基于大模型,通过集成特定的外部能力弥补不足,适用于有企业官网等渠道期望提供产品咨询服务、缺少技术人员开发大模型问答应用等场景。其典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。
2025-03-23
请问哪个平台支持上传私人知识库文件
以下平台支持上传私人知识库文件: 本地文档: 文本内容: 支持格式:.txt、.pdf、.docx。 操作步骤:在文本格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。每个文件不得大于 20M,一次最多可上传 10 个文件。上传完成后选择内容分段方式,包括自动分段与清洗(系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据)和自定义(手动设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度、设置文本预处理规则,如替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址),最后单击下一步完成内容上传和分片。 表格数据: 支持格式:.csv 和.xlsx。 操作步骤:在表格格式页签下选择本地文档,然后单击下一步。将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。每个文件不得大于 20M,一次最多可上传 10 个文件。配置数据表信息,包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取表头的列名,可自定义修改列名或删除某一列名)、指定语义匹配字段(选择作为搜索匹配的语义字段)。查看表结构和数据,确认无误后单击下一步,完成上传后单击确定。 Notion: 操作步骤:在文本格式页签下选择 Notion,然后单击下一步。单击授权,首次导入 Notion 数据和页面时需要进行授权。在弹出的页面完成登录,并选择要导入的页面。选择要导入的数据,然后单击下一步。选择内容分段方式,包括自动分段与清洗和自定义,最后单击下一步完成内容上传和分片。 自定义: 操作步骤:在文本格式页签下选择自定义,然后单击下一步。输入单元名称,然后单击确认。单击创建分段,然后在弹出的页面输入要上传的内容。每个分段最多可添加 2000 个字符。单击保存。
2025-03-18