Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable diffusion是runway和goole联合开的吗

Answer

Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。

Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。

Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。

围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...[heading1]SD是什么?[content]SD是Stable Diffusion的简称。是它是由初创公司StabilityAI、CompVis与Runway合作开发,2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像。Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。SD的代码模型权重已公开发布,可以在大多数配备有适度GPU的电脑硬件上运行。当前版本为2.1稳定版(2022.12.7)。源代码库:github.com/Stability-AI/stablediffusion我们可以通过一系列的工具搭建准备,使用SD进行想要的图片aigc(心想事成的魔法施与)。

软件:SD基本介绍

Stable Diffusion核心技术来源于AI视频剪辑技术创业公司Runway的Patrick Esser,以及慕尼黑大学机器视觉学习组的Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会CVPR22上合作发表的潜扩散模型(Latent Diffusion Model)研究。Stable diffusion是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。Stable diffusion的原理可以分为以下几个步骤:1.stable diffusion使用一个新颖的文本编码器(OpenCLIP),由LAION开发并得到Stability AI的支持,将文本输入转换为一个向量表示。这个向量表示可以捕捉文本的语义信息,并与图像空间对齐。2.stable diffusion使用一个扩散模型(Diffusion Model),将一个随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,可以从训练数据中学习出一个概率分布,并从中采样出新的数据。3.在扩散过程中,stable diffusion利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布。这样,stable diffusion可以根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。4.最后,stable diffusion使用一个超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高的分辨率。超分辨率放大器也是一个扩散模型,可以从低分辨率图像中恢复出细节信息,并增强图像质量。通过以上步骤,Stable diffusion可以实现从文本到图像的生成,并且具有以下优点:-stable diffusion可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。-stable diffusion可以生成高达2048x2048或更高的分辨率的图像,并且保持了良好的视觉效果和真实感。

游戏中的生成式 AI 革命

围绕Stable Diffusion和Midjourney等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。考虑到三个流行的生成性AI模型:Dall-E、Midjourney和Stable Diffusion的网站搜索流量。每个新模型都会有它在聚光灯下的时刻。一种替代的方法可能是构建与特定行业相符的工具套件,这些工具专注于满足给定行业的生成性AI需求,对特定受众有深入的理解,并能丰富地集成到现有的生产流程中(例如游戏的Unity或Unreal)。一个很好的例子是[Runway](https://runwayml.com/),它针对视频创作者的需求,提供AI辅助工具,如视频编辑、绿幕移除、图像修复和运动跟踪。这样的工具可以构建并变现特定的受众,并随着时间的推移添加新的模型。我们尚未看到针对游戏领域的类似Runway的套件出现,但我们知道这是一个正在积极开发的领域。1.法律挑战即将来临所有这些生成性AI模型的共同点是,它们都是使用大量的内容数据集进行训练的,这些数据集通常是通过爬取互联网本身获得的。例如,Stable Diffusion是在从网络上抓取的超过50亿的图像/标题对上进行训练的。目前,这些模型声称它们是根据“合理使用”版权原则运作的,但这一论点尚未在法庭上得到明确的检验。似乎很明显,[法律挑战即将到来](https://venturebeat.com/ai/why-generative-ai-legal-battles-are-brewing-the-ai-beat/),这可能会改变生成性AI的格局。

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
stablediffusion学习
以下是关于系统学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,Stable Diffusion 是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片。学习 Stable Diffusion 非常简单,不需要深入了解其原理也能熟练使用。 Stable Diffusion 是一种扩散模型的变体,称为潜在扩散模型。其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪和在文本引导下进行多轮预测的 UNET 等。在训练和模型方面,有多种模型实例、训练方法、格式等,如 SD1.5、SDXL 等,还包括融合模型等形式。
2025-03-25
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
Runway
以下是关于 Runway 的详细介绍: 网页:https://runwayml.com/ 注册: 零门槛注册,在右上角 Sign Up 处输入邮箱与基础信息,完成邮箱验证即可。新注册用户会有 125 个积分进行免费创作(约为 100s 的基础 AI)。 生成第一个视频的步骤: 1. 选择左侧工具栏“生成视频”。 2. 选择“文字/图片生成视频”。 3. 将图片拖入框内。 4. 选择一个动画系数。 5. 点击生成 4 秒视频。 6. 下载视频。 优势: 1. 拥有强大的底层模型,能够理解复杂的视频生成需求,并转化为高质量的视频输出。 2. 生成的视频质量高,画面清晰、动作流畅、内容连贯,能满足普通用户需求,也为专业创作者提供支持。 3. 团队持续进行技术迭代和更新,保持在视频 AI 技术前沿,提供最新、最强大的功能。 存在的问题: 1. 共用账号或生成特别好的视频时,生成队列相对较短,使用高峰期可能需等待一段时间才能开始新的视频生成任务。 2. 某些时段生成速度可能变慢,影响用户使用体验,尤其对需快速生成视频的用户。 此外,11 月 25 日的 Xiaohu.AI 日报提到 Runway 发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持,帮助用户创建统一风格、独特审美的艺术世界,适配故事或项目需求。详细介绍:
2025-03-24
注册runway账号技巧
以下是注册 Runway 账号的技巧: 1. 访问 Runway 网页:https://runwayml.com/ 。 2. 在网页右上角点击“Sign Up”进行注册。 3. 输入邮箱与基础信息,并完成邮箱验证,即可完成注册。 4. 新注册用户会有 125 个积分进行免费创作(约为 100s 的基础 AI),您可以选择“Try For Free”模式。 此外,在使用 Runway 生成视频时: 1. 选择左侧工具栏“Generate videos”(生成视频)。 2. 选择“Text/Image to Video”(文字/图片生成视频)。 3. 将图片拖入框内。 4. 选择一个动画系数。 5. 点击生成 4 秒或 5 秒、10 秒(时长越长,生成的效果可能越不稳定)的视频。 6. 下载视频。 在制作视频时,以汽车内饰片段为例: 1. 登录 Runway 账户后,在首页的左侧点击“Text/Imagine to Video”(文生视频/图生视频)。 2. 点击 2 处将汽车内饰的图片上传到 Runway 中。 3. 1 处可以更改生成图片所用到的大模型版本,数字越大代表模型越强。目前只有 Gen2 每天有免费额度。 4. 3 处用于输入提示词。 5. 4 处可以修改生成的视频时长。 6. 5 处可以看到生成的结果。 提示词方框中输入的运镜方式“Roll Clockwise Shot slowly”是摄像机围绕垂直轴顺时针旋转,常用于创造动态的、有时令人眩晕的视觉效果。不想动脑的话,每个片段的运镜方式根据分镜表的建议来即可。运镜提示词可参照: 。Runway 对于这些专有的运镜方式理解得很好。其他的提示词可以不填,先看看效果,如果效果不好,再补充简短的提示词重新生成视频。很多时候提示词过多,生成的视频就很怪异。改变提示词,改变生成时长,多抽卡几次,毕竟 Runway 会员可以无限抽卡。
2025-03-17
runway注册
以下是关于 Runway 注册的详细步骤: 1. 打开 Runway 网页:https://runwayml.com/ 。 2. 在网页右上角点击“Sign Up”进行注册。 3. 输入邮箱与基础信息,完成邮箱验证,即可完成注册。 新注册用户会有 125 个积分进行免费创作(约为 100s 的基础 AI)。 此外,Runway 还支持以下操作来生成视频: 1. 选择左侧工具栏“Generate videos”(生成视频)。 2. 选择“Text/Image to Video”(文字/图片生成视频)。 3. 将图片拖入框内。 4. 选择一个动画系数。 5. 点击生成 4 秒视频。 6. 下载视频。
2025-03-17