Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

stable video diffusion开发

Answer

以下是关于 Stable Video Diffusion 开发的相关信息:

SVD 介绍

  • 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。
  • 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVD-XL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。
  • 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。

部署实战避坑指南

  • 直接使用百度网盘里准备好的资源,可规避 90%的坑。
  • 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。
  • 云部署实战中,基础依赖模型权重有两个 models–laion–CLIP-ViT-H-14-laion2B-s32B-b79K 和 ViT-L-14.pt,需放到指定路径下。

总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。

同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。

Content generated by AI large model, please carefully verify (powered by aily)

References

Stable Video Diffusion模型核心内容与部署实战

1、直接使用百度网盘里面准备好的资源,可以规避掉90%的坑;2、如果一直报显存溢出问题,可以调低帧数或增加novram启动参数;3、针对云部署实战部分,基础依赖模型权重有两个models–laion–CLIP-ViT-H-14-laion2B-s32B-b79K和ViT-L-14.pt,需要放到指定路径下;4、加入「AIGCmagic社区」群聊,一起交流讨论,涉及AI视频、AI绘画、Sora技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个不同方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群!![heading1]——总结——[content]在Sora发布之后,似乎在这之前的所有视频生成模型都已黯淡无光,难以与之争锋!然而Stable Video Diffusion作为开源项目,我们可以在自己的机器上自由创作而无需充值,这也是其独特优势!从技术角度看,SVD生成的视频画质非常清晰,帧与帧之前的过渡也非常的自然,无论是背景闪烁的问题,还是人物一致性的保持都能够得到妥善解决!尽管目前只能生成最多4秒的视频,与Sora生成的60s视频差距很远,但是SVD还在不断迭代,相信其终将再次强大!!!同时,我们会持续关注SVD技术及前沿视频生成技术,尝试多种不同的部署微调方式,介绍更多视频生成的技术模型,更多精彩内容会在后续文章中放出,敬请期待!!!

Stable Video Diffusion模型核心内容与部署实战

Stable Video Diffusion是Stability AI于2023年11月21日发布的视频生成式大模型,一种用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。SVD模型不仅支持文本、图像生成视频,还支持多视角渲染和帧插入提升视频帧率。用户可以调整模型选择、视频尺寸、帧率及镜头移动距离等参数。SVD模型对硬件要求较高,对于缺乏硬件资源的普通用户有一定限制,同时其支持的图片尺寸较小,限制了它的应用场景。尽管SVD与其他商用产品在帧率、分辨率、内容控制、风格选择和视频生成时长等方面存在差距,但其开源属性和对大规模数据的有效利用构成了其独特优势。[heading2]模型版本[heading2][content]当时,Stable Video Diffusion开源了两种图生视频的模型,一种是能够生成14帧的SVD,另一种则是可以生成25帧的SVD-XL。在以基础形式发布时,通过外部评估,发现这些模型超越了人类偏好研究中领先的封闭模型。[heading2]主要贡献[heading2][content]提出一个系统的数据管理工作流程,将大量未经管理的视频集合转变为用于生成视频建模的高质量数据集。使用此工作流程,训练最先进的文本到视频和图像到视频模型,其性能优于所有现有模型。通过进行特定领域的实验来探索SVD模型中运动和3D理解的强先验。具体来说,预训练的视频扩散模型可以转变为强大的多视图生成器,这可能有助于克服3D领域中的数据稀缺问题。

2025 年 AI 指数报告,斯坦福.pdf

Sample from the Chatbot Vision ArenaSource:Chatbot Arena Leaderboard,2025Pixtral-Large-2411ClaudeSonnet(20241022)Sonnet(20240620)Gemini-1.5-Flash-002GPT-4o-2024-05-13Gemini-1.5-Pro-002ChatGPT-4o-latest(2024-11-20)Gemini-Exp-1206Gemini-2.0-Flash-ExpGemini-2.0-Flash-Thinking-Exp-1219Elo ratingFigure 2.3.8Table of ContentsChapter 2 Preview123Artificial Intelligence Index Report 20252.3 Image and Video Chapter 2:Technical PerformanceHighlight:The Rise of Video GenerationAs highlighted in last year’s AI Index,recent years have witnessed the rise of video generation models capable of creating videos from text prompts.While earlier models demonstrated some promise,they were plagued by significant limitations,such as producing low-quality videos,omitting sound,or generating only very short clips.However,2024 marked a significant leap forward in AI video generation,with several major industry players unveiling advanced video generation systems.In November 2023,Stability AI launched its Stable Video Diffusion model,their first foundation model capable of generating high-quality videos(Figure 2.3.9).The modelStill generations from Stable Video DiffusionSource:Stability AI,2025

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
stablediffusion学习
以下是关于系统学习 Stable Diffusion 的相关内容: 学习 Stable Diffusion 的提示词是一个系统性的过程,需要理论知识和实践经验相结合。具体步骤如下: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分,如主题词、修饰词、反面词等。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 此外,Stable Diffusion 是一个 AI 自动生成图片的软件,通过输入文字就能生成对应的图片。学习 Stable Diffusion 非常简单,不需要深入了解其原理也能熟练使用。 Stable Diffusion 是一种扩散模型的变体,称为潜在扩散模型。其核心组件包括将用户输入的 Prompt 文本转化成 text embedding 的 CLIP、VAE EncoderDecoder 以及进行迭代降噪和在文本引导下进行多轮预测的 UNET 等。在训练和模型方面,有多种模型实例、训练方法、格式等,如 SD1.5、SDXL 等,还包括融合模型等形式。
2025-03-25
1. laptop 2. artificial intelligence 3. generative 4. log in 5. AI-driven 6. bluetooth headset 7. video call 8. platform Write some interesting sentences with these words
以下是为您生成的包含这些关键词的有趣句子: 当我使用配备强大 GPU 的 AI 笔记本电脑,如戴尔 Precision 移动工作站,通过蓝牙耳机关闭了周围的噪音,登录到专门的 AI 驱动平台,与远方的朋友进行视频通话,探讨生成式人工智能的奇妙之处,感觉真是太棒了! 在微星 Creator/Workstation 系列的 AI 笔记本上,我利用预装的深度学习框架,如 NVIDIA CUDA 和 cuDNN,进行着生成式模型的训练,同时通过蓝牙连接着蓝牙耳机,享受着不受干扰的创作过程,然后登录到特定的平台分享我的成果,这一切都由 AI 驱动,借助高速的网络实现了如同面对面的视频通话交流。 联想 ThinkPad P 系列的 AI 笔记本,拥有出色的散热和续航,让我能长时间专注于生成式项目的开发。我戴上蓝牙耳机,登录 AI 平台,与团队进行视频通话,共同推动项目前进,这一切都离不开 AI 驱动的强大力量。
2025-01-20
Video-LLaVA与多模态图像视频识别
以下是对 26 个多模态大模型的全面比较总结: 1. Flamingo:是一系列视觉语言(VL)模型,能处理交错的视觉数据和文本,并生成自由格式的文本作为输出。 2. BLIP2:引入资源效率更高的框架,包括用于弥补模态差距的轻量级 QFormer,能利用冻结的 LLM 进行零样本图像到文本的生成。 3. LLaVA:率先将 IT 技术应用到多模态(MM)领域,为解决数据稀缺问题,引入使用 ChatGPT/GPT4 创建的新型开源 MM 指令跟踪数据集及基准 LLaVABench。 4. MiniGPT4:提出简化方法,仅训练一个线性层即可将预训练的视觉编码器与 LLM 对齐,能复制 GPT4 展示的功能。 5. mPLUGOwl:提出新颖的 MMLLMs 模块化训练框架,结合视觉上下文,包含用于评估的 OwlEval 教学评估数据集。 6. XLLM:陈等人将其扩展到包括音频在内的各种模式,具有强大的可扩展性,利用 QFormer 的语言可迁移性成功应用于汉藏语境。 7. VideoChat:开创高效的以聊天为中心的 MMLLM 用于视频理解对话,为该领域未来研究制定标准,并为学术界和工业界提供协议。
2025-01-07
what are the free video generation ai
以下是一些免费的视频生成 AI 工具: 1. Hidreamai(国内,有免费额度):支持文生视频、图生视频。提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。网址:https://hidreamai.com//AiVideo 2. ETNA(国内):由七火山科技开发的文生视频 AI 模型,可根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。网址:https://etna.7volcanoes.com/ 3. Pika Labs:被网友评价为目前全球最好用的文本生成视频 AI。功能包括直接发送指令或上传图片生成 3 秒动态视频,目前内测免费。生成服务托管在 discord 中,加入方式为在浏览器中打开链接 https://discord.gg/dmtmQVKEgt ,在“generate”子区输入指令或上传图片生成视频。 4. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 5. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
video-ocean制作的视频没有声音怎么解决
很抱歉,目前知识库中没有关于“videoocean 制作的视频没有声音的解决办法”的相关内容。但一般来说,视频没有声音可能有以下几种原因和解决方法: 1. 检查视频播放器的音量设置,确保音量未被静音或调至过低。 2. 查看视频文件本身的音频轨道是否存在问题,您可以尝试使用其他播放器打开该视频。 3. 检查您的设备音频输出设置,例如扬声器或耳机是否正常工作,以及其音量设置是否恰当。 4. 确认视频在制作过程中是否正确添加了音频,如果没有添加音频,可能需要重新制作并添加音频。
2024-12-26
Topaz Video无法下载模型怎么办
Topaz Video 无法下载模型,您可以参考以下步骤: 1. 解压对应的文件,推荐使用绿色版。(对应的安装包已在网盘里,可直接下载)。 2. 右键,管理员运行 VideoAIportable.exe 文件。 3. 导入处理好的视频。 4. 查看主界面,左边是原视频,右边是待处理视频,下面是对应的视频轨道。 5. 右边部分是主要对视频处理的方式,预设部分主要有放大视频、提升画质、提升帧率等。 6. 稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 为宜,抖动开启,次数一般选择 2 。 7. 帧插值:Apollo 模型处理一般情况,Chronos 模型处理运动幅度较大的情况,其他一般维持默认不变。 8. 增强部分建议直接开启使用默认。 9. 所有参数设计完毕后,点击浏览按钮查看效果。拉动时间轴,选择需要处理的位置,点击左边的 preview 即可执行浏览操作,可选择处理时长,一般在复杂场景如肢体快速运动时进行浏览。 请注意,以上操作依据电脑性能而定。若仍无法下载模型,建议检查网络连接或咨询相关技术支持。
2024-08-21
做 video lip sync 的高质量项目有哪些?
以下为一些关于 video lip sync(视频唇形同步)的高质量项目介绍: 谷歌的“Generating audio for video”项目正在开展进一步研究。该项目具有以下特点: 1. 与现有视频音频解决方案相比,它能够理解原始像素,并且添加文字提示是可选的。 2. 系统无需手动调整生成的声音和视频,避免了对声音、视觉效果和时间等不同元素进行繁琐的调整。 3. 但仍存在一些限制因素需要解决,比如音频输出质量依赖于视频输入质量,视频中的假象或失真超出模型训练分布范围会导致音频质量明显下降。 4. 正在改进涉及语音的视频唇形同步。V2A 尝试从输入的文稿生成语音并与角色的唇形动作同步,但配对的视频生成模型可能不受文稿条件的限制,这会造成不匹配,导致唇形同步不自然。 需要注意的是,这一项目仍在不断完善和改进中。
2024-07-24
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
对于用cursor来开发,有没有好好用prompt来使cursor变得更加好用
以下是关于如何用 prompt 使 Cursor 变得更好用的相关内容: 在 prompt 方面,Devin 有一个特别有帮助的文档(https://docs.devin.ai/learnaboutdevin/prompting),它会教您什么样的 prompt 在与 Devin 沟通时最有效,比如明确定义成功的标准,如跑通某个测试或访问某个链接能对得上等。将同样的原则应用到 Cursor 中,会发现 Cursor 变得聪明很多,能自主验证任务完成情况并进行迭代。 Cursor 在生成单测方面表现出色。相对 GPT 等工具,Cursor 解决了上下文缺失和难以实现增量更新的问题。它可以向量化整个代码仓库,在生成单测代码时能同时提供目标模块及对应的上下游模块代码,生成结果更精确。例如,使用适当的 Prompt 能返回基于 Vitest 的结果,调整成本较小。 Cursor 支持使用.cursorrules 文件设定项目的系统提示词,针对不同语言可设定不同的 Prompt。@AIChain 花生做了一个 Cursor 插件解决提示语管理问题,可选择不同的.cursorrules 文件,还可从 https://cursor.directory/ 和 https://cursorlist.com/ 寻找提示词。此外,还有一个提示语小技巧,给已有的提示语追加上特定规则,可使模型在搜索资源和思考时默认使用英语,回复转换成中文,或更灵活地根据提问语言进行回复。
2025-04-14
我是一个前端开发人员,在工作中,我可以使用哪些ai工具提效
以下是一些适合前端开发人员在工作中提效的 AI 工具: 1. 辅助编程工具: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力。 CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 Codeium:通过提供代码建议等帮助提高编程效率和准确性。 更多辅助编程 AI 产品,可查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 测试用例生成:AI 在生成测试用例方面具有显著优势,能自动化和智能化生成高覆盖率的测试用例,减少人工编写时间和成本。通过合理应用 AI 工具,可提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 3. 网页原型图生成工具: 即时设计:https://js.design/ ,可在线使用的「专业 UI 设计工具」,注重云端文件管理和团队协作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统,能通过文本或图像生成代码化的用户界面。 Wix: ,用户友好,无需编码知识即可创建和自定义网站,提供广泛模板和设计选择,以及多种功能。 Dora:https://www.dora.run/ ,通过一个 prompt,借助 AI 3D 动画生成强大网站。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-14
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13