Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图像转3D模型目前有相关的技术和已经落地的产品嘛。可以借鉴哪些网站

Answer

有,例如:

  • Spline推出 AI 3D Generation 工具,可以将 2D 图像转成 3D 图像,混合素材生成 3D 变体。生成的 3D 内容可集成到网站和应用中。
  • ComfyUI 3D Pack 引入了 3D 图像处理,可以快速将图片转换为 3D 模型,并支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出。
  • Move AI 推出了 Move API,可以从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。
Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
图像翻译
图像翻译具有以下特点和功能: 多语言支持:涵盖 18 种语言,包括中文、英文、法语、日语、韩语和西班牙语。 保护图像主体:可选择不翻译品牌名称或重要信息,避免影响关键内容。 高分辨率处理:支持高达 4000×4000 像素的图像,确保翻译后画质清晰。 原始排版恢复:保留原字体、大小及对齐方式,确保设计一致性。 多行文本合并:将多行文本合并为段落翻译,避免逐行翻译造成误解。 清除文本痕迹:翻译后干净移除原文本,并恢复图像空白区域。
2025-04-14
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28
gpt4o图像生成
GPT4o 是 OpenAI 推出的具有强大图像生成能力的多模态模型,能够实现精确、准确、照片级真实感输出。其核心功能包括生成美观且实用的图像,如白板演示、科学实验图解等。亮点功能有精确的文本渲染,能在图像中准确生成文字,如街道标志、菜单、邀请函等;支持多样化场景生成,从照片级真实感到漫画风格均可;具有上下文感知能力,能利用内在知识库和对话上下文生成符合语境的内容。技术上通过联合训练在线图像和文本的分布,学会了图像与语言及图像之间的关系,经过后期训练优化,在视觉流畅性和一致性方面表现出色。实际应用场景包括信息传递、创意设计、教育与演示等。但也存在某些场景或细节的限制。安全性方面,OpenAI 强调了保护。目前该功能已集成到 ChatGPT 中,用户可直接体验。 此外,在 3 月 26 日的 AI 资讯汇总中,OpenAI 推出了 GPT4o 图像生成能力。昨晚 Open AI 更新 GPT4o 图像生成功能后,其真正强大之处在于几乎可以通过自然语言对话完成复杂的 SD 图像生成工作流的所有玩法,如重新打光、扩图、换脸、融脸、风格化、风格迁移、换装、换发型等。
2025-03-28
免费增强图像分辨率的
以下是一些免费增强图像分辨率的工具和方法: 1. Kraken.io:主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 2. Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 3. Waifu2x:提供图片放大和降噪功能,使用深度学习技术提高图像质量,保留细节和纹理,简单易用效果好。 4. Bigjpg:强大的图像分辨率增强工具,使用神经网络算法加大图像尺寸,提高图像质量,处理速度快。 此外,还有以下相关资源: 1. 【超级会员 V6】通过百度网盘分享的 Topaz 全家桶,链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」。 2. RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次后要收费。 3. InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。地址、在线试用地址:https://github.com/zsyOAOA/InvSR?tab=readme ov filerailway_car online demo 、https://huggingface.co/spaces/OAOA/InvSR 。 4. GIGAGAN:https://mingukkang.github.io/GigaGAN/ 。 5. Topaz Gigapixel AI:https://www.topazlabs.com/gigapixel ai 。 6. Topaz Photo AI:https://www.topazlabs.com/ 。 7. discord:https://discord.gg/m5wPDgkaWP 。
2025-03-24
图像生成
图像生成是 AIGC 的一个重要领域,离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。 图像生成可用于多种场景,如数据增强以提高机器学习模型的性能,也可用于创造艺术、生成产品图像(如艺术作品、虚拟现实场景或图像修复等)。 一些具有代表性的海外项目包括: Stable Diffusion:文本生成图像模型,主要由 VAE、UNet 网络和 CLIP 文本编码器组成。首先使用 CLIP 模型将文本转换为表征形式,然后引导扩散模型 UNet 在低维表征上进行扩散,之后将扩散之后的低维表征送入 VAE 中的解码器,从而实现图像生成。 DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。 在图像生成的用法方面,图像生成端点允许您在给定文本提示的情况下创建原始图像。生成的图像的大小可以为 256x256、512x512 或 1024x1024 像素。较小的尺寸生成速度更快。您可以使用 n 参数一次请求 1 10 张图像。描述越详细,就越有可能获得您或您的最终用户想要的结果。您可以探索 DALL·E 预览应用程序中的示例以获得更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。 AI 绘图 Imagen 3 具有以下功能点和优势: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。
2025-03-23
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
AI在企业落地
企业落地 AI 可以参考以下内容: Anthropic 在 AI Engineer Summit 2025 上分享了相关最佳实践,并总结了常见错误。核心挑战包括如何入手、如何评估效果、技术选择困惑(如是否需要微调)。关键经验是评估先行,明确“智能度、成本、延迟”之间的平衡,避免过早微调,先进行基础优化。例如 Intercom 通过评估优化 AI Agent Fin,使其处理 86%的客服请求,其中 51%无需人工介入。相关链接: 影刀 RPA+AI Power 方面:大模型有输入和输出限制,AI Power 集成丰富组件及技能组件可拓展 AI 服务能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作。其具有无缝多样的使用方式,如嵌入方式包括网页分享、对话助理、API 集成等。企业系统分散,AI Power 提供多种调用方式方便企业灵活选择接入方式。此外,影刀 AI Power 为企业提供教学培训、技术答疑、场景共创等贴身服务支持,帮助企业把 AI 落地。 此外,相关知识库还介绍了面向学习者、创作者和企业的不同服务: 面向学习者:社区提供清晰学习路径,学习者通过丰富课程、活动和竞赛提升自己,积累能力成为高素质 AI 人才。 面向创作者:创作者掌握 AI 技术利用社区资源创作,满足企业需求,为社区发展注入活力。 面向企业:链接 AI 产品和传统企业,通过与社区合作获得优质内容与服务,从学习者中获取潜在流量。社区合作实践为学习者和创作者提供应用场景和技术经验。
2025-04-12
AI在BizDevOps中的场景落地及应用
以下是关于 AI 在 BizDevOps 中的场景落地及应用的相关内容: AI 在 DevOps 中的应用: AI 可以承担指定计划、拆分任务和调用工具的角色,但目前无法完全评定任务结果的正确性和质量。 现阶段更适合让 AI 辅助完成部分任务,如画原型图、设计表结构、写自动化测试代码等,但需要人类验证后才能进行下一步操作。 完全依赖 AI 可能带来风险,如生产环境出错或被黑客恶意利用漏洞。 AI 的记忆能力: ChatGPT 支持记忆功能,可通过摘要保存对话内容以延续角色和对话风格,但新开会话可能在高推理任务中效果更好。 建议将角色设定和部分对话作为样例(fewshot)放入提示词中,以优化生成质量。 学习 GPT 的妙招: 结合视频教程、文字转录和基础资料,通过 ChatGPT 讲解学习内容。 角色反转,自己当老师,ChatGPT 当学生,通过提问互动和查漏补缺能有效提升学习效果。 AI 对软件工程的影响: 涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。 自动代码生成工具(如 GitHub Copilot)提高编程效率,AI 也助力智能测试与运维。 DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。 AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 其他相关动态: OpenAI CEO 宣布开发 AI 设备,目标颠覆智能手机。 OpenAI 推出全新 Deep Research,让 ChatGPT 成为研究助理。
2025-04-01
chatbi落地方案
以下是关于 ChatGPT 落地方案的相关内容: 产品经理如何用 ChatGPT: 背景前提:非专业 BI 工程师,依靠 GPT 提示和查询资料解决不擅长领域问题及学习成长。使用免费的 ChatGPT3.5 版本,因充值问题未解决,且账号登录出现问题无法截图还原完整对话过程。 使用过程: 先整理与 GPT 交互的基本思路及步骤,包括旧代码输入、需求及现状问题输入、调试优化、结果输出验证。 旧代码输入时,1900 行代码直接粘贴报错,采取分次输入再联合的方式,让 GPT 理解旧代码实现效果及熟悉查询表和字段,方便后续生成优化代码直接在数据库运行。原 SQL 主要逻辑是统计近 30 天内每天的业务数据日报,按天和地区分组汇总,需查询多张表几百万条数据。GPT 理解基本正确,并主动提出优化建议。 LLM 落地思考: 对大模型的任务理解、编程能力、输出遵循有较高要求,需要 LLM 前处理与后处理工程兜底,因企业流程自动化出错影响面广。该方向能帮助企业完成数字化转型并升级至业务自动化,多为定制化服务,业务爆发期可能在几年后经济回暖时,目前需求方可能优先是国企与金融等数字化成熟且有国家 AI+任务驱动的地方。 采用 RAG 方案进行知识应用的工程框架,包括 AI 搜索、智能客服、流水线问题定位等场景,通过给予大模型已有行业知识解决问题,但前处理过程对方案效果影响较大。 ToC 业务方面,当前爆款产品如 ChatGPT、Midjourney 等,暂未出现像微信这样的大杀器 C 端产品,未来 C 端产品形态难以确定。
2025-03-22
如何借鉴“决战拜年之巅”:这是一款基于 GLM 大模型开发的微信小程序游戏,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问,自由对话打出属于自己的结局。实现一个工作场合的游戏
以下是借鉴“决战拜年之巅”实现一个工作场合游戏的相关要点: 1. 开发背景:“决战拜年之巅”是参加 Globalgamejam 游戏比赛时,在 48 小时内开发的,主题源于“make me laugh”,产品负责人谐音想到江浙沪孝子排行榜的“孝”,结合春节想到做类似拜年的东西。 2. 火爆情况:在参赛群发布半成品后,在 QQ、微信迅速火爆,两天内有 200 万用户,最高峰同时在线 6 万人,服务器一度支持不了,凌晨才做好调整,后续有厂商赞助服务器,上线约一周。 3. 游戏特点:基于 GLM 大模型开发,又称过年模拟器,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问自由对话打出结局。 4. 借鉴要点: 明确创新主题和玩法,结合特定场景和需求。 注重用户体验,及时应对服务器等技术支持问题。 利用 AI 技术实现角色互动和自由对话。 需要注意的是,“决战拜年之巅”被认为可能是一个 chatbot 而非严格意义上的游戏。在设计工作场合的游戏时,要明确以下三个点:(具体要点未在提供的内容中明确)
2024-11-02
我的app应用想要对接大语言模型,结合APP用户自身的数据,实现更精准的对话,是否有行业比较成功的案例可以借鉴
以下是一些在 APP 应用对接大语言模型方面比较成功的案例,可供您借鉴: 1. Poe: 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短的回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用。 支持分享用户和模型的对话内容,但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户,midjourney prompt 扩写 Chatbot 能力很惊人。 2. Perplexity.ai: 本质是个可联网的搜索引擎,完全免费,支持网页版、APP(目前支持 iOS,安卓即将推出)、Chrome 插件。 网页版能力全面,能够根据提问从互联网上搜寻信息并给出总结后的答案。 很多 Chat GPT 中调用插件才能解决的事情(联网查询、旅行、住宿、商品推荐)靠 Perplexity 就可以解决。 能给出信息来源网址,并根据搜索内容给出继续对话的问题建议。 最新推出的 Copilot 能力支持根据搜索内容进行信息补充,每 4h 内使用 5 次,调用 GPT4。 支持分享聊天内容到多渠道。 首页推荐当下流行的新闻、搜索内容。 支持筛选 Academic(包含不同领域的学术研究论文)、Wolfram|Alpha(包含数学、科学、经济学、语言学、工程学、社会科学、文化等领域的知识库)、Wikipedia(维基百科)、Youtube、Reddit(娱乐、社交和新闻网站)、News 进行搜索。 Chrome 插件可针对当前页面给出即时摘要。 访问地址:
2024-10-18
AI生成的图片是原创吗 有没有借鉴
在全国首例 AI 生成图片著作权案例中: 法官承认依靠使用者的输出设计生成的图片属于美术作品,具有独创性和智力投入,受著作权保护,能鼓励创作,为艺术创作提供支持和新思路,节省创作成本。 根据相关法律规定,我国著作权作者仅限于自然人、法人或非法人组织,人工智能软件本身不能成为作者。 Stable Diffusion 模型根据文本指令生成图片,不是调用现成图片或排列组合预设要素,生成的图片取决于使用者输入的提示词,难以出现完全相同的两张输出图片,类似于画笔,图画构造取决于使用者设计。 人工智能不具备自由意志,使用者根据自己的审美个性,通过增删提示词、修改参数得出不同图片并选定,体现使用者的智力和独创思想,如同使用相机拍摄时的调节。 软件设计者对模型设计投入智力成果,但后续生成内容与设计者关系不大。图片由创作者根据个人意愿得出,应成为作者并享有著作权。 尽管 AI 是工具,法院强调著作权仍属于人类创作者,保护人类在知识产权领域的权益,鼓励利用 AI 技术创作艺术作品。 在未显示作者身份信息的情况下使用图片构成侵权。
2024-09-18
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14