Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

agent一般是私有化部署,还是公有化部署

Answer

AI助手或智能代理(Agent)的部署可以是私有化部署,也可以是公有化部署,具体取决于应用场景、需求、安全考虑以及成本效益等因素。

  1. 私有化部署

    • 在企业或组织的内部网络中部署,通常用于处理敏感数据或需要高度定制化的服务。
    • 提供更高的安全性和隐私保护,因为系统不公开于互联网。
    • 允许更精细的控制和管理,适合有特定业务流程和需求的企业。
  2. 公有化部署

    • 在云服务提供商的基础设施上部署,通过互联网提供服务。
    • 易于扩展,维护成本较低,因为云服务商负责大部分的维护工作。
    • 适用于面向公众的服务,如在线客服机器人、开放平台的API服务等。

选择哪种部署方式取决于以下因素:

  • 数据敏感性:如果处理的数据非常敏感,私有化部署更有利于保护数据安全。
  • 成本:私有化部署可能需要更多的初始投资,而公有化部署可能带来更高的灵活性和可扩展性。
  • 维护能力:如果企业有足够的技术力量来维护私有化部署的系统,这可能是一个更好的选择。
  • 定制化需求:私有化部署更容易根据企业的特定需求进行定制。
  • 法规遵从性:某些行业或地区的法律法规可能要求企业必须进行私有化部署。

在实际应用中,一些企业可能会选择混合部署模式,即在私有云中部署核心的、敏感的业务组件,同时将一些非核心或较不敏感的组件部署在公有云上,以此来平衡安全性、成本和灵活性。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
本地部署
SDXL 的本地部署步骤如下: 1. 模型下载:SDXL 的大模型分为两个部分,第一部分 base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化以生成细节更丰富的图片。此外,还有一个配套的 VAE 模型用于调节图片的画面效果和色彩。这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 2. 版本升级:要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:完成上述步骤后启动 webUI,即可在模型中看到 SDXL 的模型。正常使用时,先在文生图中使用 base 模型,填写提示词和常规参数(如尺寸设置为 10241024)进行生成。然后将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点再次点击生成。 5. 插件辅助:若觉得操作麻烦,可在扩展列表中搜索 refine 安装插件并重启,启用插件后可在文生图界面直接使用 refine 模型进行绘画。 另外,关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG,步骤包括导入依赖库(如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型)、从订阅源获取内容(通过指定函数从 RSS 订阅 url 提取内容,并将长文本拆分成较小的块附带相关元数据)、为文档内容生成向量(使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储),最终实现 RAG。
2025-04-13
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
如何部署自己私人AI
部署自己私人 AI 可以参考以下几种方式: 通过云服务器、dify、智能微秘书来免费搭建微信机器人: 1. 在宝塔面板的终端安装相关命令,这些命令位于/root/dify/docker 目录下。 2. 检查运行的容器数量,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 3. 在浏览器地址栏输入公网 IP(去掉后面的:8888),进入后邮箱密码随便填,建立知识库并进行设置。 4. 选择模型,国内模型有免费额度可选,如智谱 ai,获取钥匙并复制保存,创建应用进行测试和发布。 基于 Hook 机制的微信 AI 机器人: 1. 将 Administrators 改成“wxid_dna83ykqawl222”。 2. 若有 FastGPT 或者 OpenAI 的 key,将 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key;若没有,保持 Ai_Lock 为 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件双击运行。 5. 运行后会弹出微信登录框,正常登录微信,等待系统自动初始化必备文件。 6. 运行成功后,用“大号”给机器人发消息,拿到 wxid 并返回替换。 7. 添加完后,用小号登录,大号可对小号发号施令。 部署和训练自己的 AI 开源模型: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身资源、安全和性能需求选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,如开源的 BERT、GPT 等,也可自行训练基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-11
DEEP SEEK 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)
以下是关于 Deep Seek 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)的相关内容: 一、使用 Docker + RAGFlow + Ollama 搭建个人/企业知识库 1. 将 Ollama 部署的模型接入 GARFlow 返回 RAGFlow 中,打开右上角设置,进入模型提供商,配置 Ollama 相关信息,基础 URL 按要求设置,设置完成后点击确定。 导入一个 embedding 模型用于文本向量化,导入成功后设置系统模型设置,然后返回知识库创建知识库。 进入数据集,导入文件(可设置文件夹当作知识库),导入完毕后解析文件,解析速度取决于本机 GPU 性能,解析好后进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。 2. 使用 Ollama 本地部署 DeepSeek 模型 先下载 Ollama 程序,官方网址:https://ollama.com/ 。 下载默认到 C 盘(一般为固态盘,运行速度快),若想修改安装目录到 D 盘,后续会有说明。 下载完右下角会出现 Ollama 图标,打开命令行输入相关命令回车。 若显卡是英伟达 2060Super,可选择 Deepseekr1:14b 的模型,根据自身独立显卡性能下载。 下载速度慢可按 Ctrl+C 强制退出重新下载。 下载完毕后再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相关命令,下载好后直接退出终端。 二、Flowith 相关报道、采访、使用指南 |标题|发布账号|社媒来源|日期|链接| |||||| |ChatGPT 的对话框过时了?这款 AI 产品提供了一种很新的聊天方式|爱范儿|公众号|2024/04/29|| |Flowith:革新你的工作方式,体验节点式 AI 的超流畅生产力|程序那些事儿|公众号|2024/05/03|| |体验 Flowith:探索人机交互从传统聊天对话到画布式知识管理的转变|AI 兔子洞|公众号|2024/04/22|| |deepseek 服务器繁忙?硅基流不动?看看这篇,内含 18 个平台,可能是最全的 deepseek 方案。|佐佐的 AI 笔记|公众号|2025/02/06|| |满血版自部署 DeepSeekR1+知识库+联网搜索,体验下来可能就只剩下这家了!|字节笔记本|公众号|2025/02/12|| |DeepSeek 让 AI 圈卷出了新高度:Flowith 宣布 DeepSeek R1 现在免费提供!|字节笔记本|公众号|2025/01/27|| |ShowMeAI 周刊 No.15|上周最有讨论度的 6 个 AI 话题:自由画布类产品密集更新、多主体一致成发展趋势、AGI、开源…|ShowMeAI 研究中心|公众号|2025/01/21||
2025-04-10
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
deepseek 私有化部署
DeepSeek 的私有化部署相关信息如下: PaaS 平台特性:支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 云端部署操作:登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 模型试用方法:使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 作业布置:部署成功一个大语言模型,通过调试证明成功,在调试内容中带上钉钉昵称向模型对话,将成功结果提交问卷可获得阿里云小礼包。 API 调用与服务关停:介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 模型蒸馏概念:教师模型将知识蒸馏给学生模型,有多种蒸馏方式,如 R1 通过蒸馏数据集并用于学生模型微调。 蒸馏应用场景:包括车机等算力有限场景,能让小模型在特定领域有良好效果,还能实现低成本高速推理和修复模型幻觉。 模型部署实操:在 model gallery 中选择模型,如 1000 问 7B 指令模型,进行部署,选择 VIM 加速和竞价模式,查看部署状态和日志。 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较:R1 模型通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。
2025-03-24
如何一步一步实现RAG 模型的私有化部署
要一步一步实现 RAG 模型的私有化部署,可参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 关于 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 需先安装,访问 https://ollama.com/download/ 下载安装,安装后确保 ollama 后台服务已启动。 5. 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题实现 RAG。 6. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯。 2. 上下文数据质量和大模型的性能决定 RAG 系统性能上限。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 构建有效的 RAG 系统需要考虑多个因素: 1. 数据安全性:若有需求,需进行私有化部署,并考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集带来高昂的文档清洗、解析和分割成本,大数据量级带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现本地部署资讯问答机器人时,如 Langchain + Ollama + RSSHub 实现 RAG,需导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识、实现快速迭代和定制化信息检索。 构建有效的 RAG 系统并不简单,企业若要进行私有化部署,需考虑以下因素: 1. 数据安全性:若有需求,需考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集会带来高昂的文档清洗、解析和分割成本,大数据量级会带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,会带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现 RAG 模型私有化部署还涉及一些技术操作,如本地部署资讯问答机器人时,需要导入依赖库、从订阅源获取内容、为文档内容生成向量等。
2025-03-20
AI Agent MANUS个人助手是否可以本地私有化部署
目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。 Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。 但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。
2025-03-07
deepseek 私有化训练
以下是关于 DeepSeek 私有化训练的相关信息: 模型测试、问题探讨与新模型部署过程: 探讨了模型存在幻觉、答案有概率性等问题,并对比了加提示词前后的情况。 准备从 32B 蒸馏新模型,提及该模型的资源需求及阿里云拍卖机制。 介绍了启动 DSW 获取廉价 CPU 资源,以及部署模型时因库存不足不断加价的过程。 派平台大模型训练与微调实操讲解: 许键分享了抢硬件资源的方法,演示了通过提问蒸馏标注数据。 讲解了在派平台训练模型的流程,包括参数设置、数据集上传等,并展示了训练效果和日志查看。 说明了训练好的模型部署方法,强调训出满意模型需要大量基础知识学习。 模型蒸馏微调演示、平台介绍与问题解答: 许键展示了模型微调后的效果,如幻觉下降等。 介绍了阿里云解决方案,对比了百炼和派平台的差异。 进行了 Q&A,回答了无监督学习微调、训练数据资源、多模态训练标注、Python 代码报错等问题,提及派平台有公用数据集,还举例说明了多模态标注方式。 总结: 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较: R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 智能章节: 许键介绍今日课程重点是云服务器上如何使用 Deepseek R1 及本地部署相关内容,提及派平台免费额度及适用模型。还介绍了自己和社区情况。接着讲解 Deepseek R1 制作过程,包括强化学习概念及示例,阐述其从 Deepseek r e Zero 到 M2 等模型的演变及原理。 主要介绍了 Deepseek R1 模型的构建过程,包括多轮强化学习和微调,还提及蒸馏模型的情况。探讨了不同模型部署所需的显存、内存及成本,对比了各模型在专业领域的能力表现。 介绍了以云基础设施和 GPU 算力资源为底层的派平台。该平台搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-05