Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI Agent MANUS个人助手是否可以本地私有化部署

Answer

目前没有明确的信息表明 AI Agent MANUS 个人助手可以本地私有化部署。

Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。它区别于传统聊天机器人,具备自主规划、执行复杂任务并直接交付完整成果的能力。其技术架构主要基于多智能体架构,运行在独立的虚拟机中,核心功能由多个独立模型共同完成,包括规划、执行和验证三个子模块,还包括虚拟机、计算资源、生成物、内置多个 agents 等关键组件,并采用了“少结构,多智能体”的设计哲学。

但对于其是否能本地私有化部署,现有资料未给出确切说明。在构建高质量的 AI 数字人方面,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,算法一般会部署到额外的集群或者调用提供出来的 API。而在本地部署资讯问答机器人方面,有相关案例,但未提及与 AI Agent MANUS 个人助手的直接关联。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

原创行百里者半八十AI花果山2024-04-18 20:36在这个信息爆炸?的时代,人工筛选对自己有价值的信息无异于大海捞针。不过,幸好现在有了AI这个强大的工具,我们可以让它来帮我们做集检索、整合与分析为一体的工作。这里,我想以A股行情(其他场景也类似)问答为例,希望构建这么一个Bot,当我问它诸如「XX股票今天表现怎么样?」、「复盘今天的家电板块」等问题时,它可以迅速从海量市场数据中找到有价值的信息,帮我进行整合与分析,然后为我提供个性化的回复。另外,这里我还有个要求,希望能在本地私有化部署,这就意味着与coze无缘了。关于coze,可以参考我之前写的几篇文章:

详解:Manus

Manus是一款由中国团队研发的全球首款通用型AI代理工具,于2025年3月5正式发布。它区别于传统聊天机器人(如ChatGPT),具备自主规划、执行复杂任务并直接交付完整成果的能力,被称为“首个真干活的AI”。[heading1]Manus AI代理工具的具体技术架构是什么?[content]Manus AI代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。这种架构通过规划、执行和验证三个子模块的分工协作,实现了对复杂任务的高效处理。具体来说,Manus AI的核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。这种多模型驱动的设计不仅提高了系统的鲁棒性和准确性,还增强了其处理复杂任务的能力。[heading2]Manus AI的技术架构还包括以下几个关键组件:[content]1.虚拟机:Manus AI运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。2.计算资源:Manus AI利用计算资源生成算法,用于筛选简历等具体任务。3.生成物:Manus AI能够生成各种类型的输出,如文本、表格、报告等。4.内置多个agents:Manus AI通过内置多个智能体,实现了任务的分解和协同工作。此外,Manus AI还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现AI的能力。这种设计使得Manus AI在处理复杂任务时更加高效和准确。Manus AI的技术架构通过多智能体协同工作、虚拟机运行和生成物输出等机制,实现了对复杂任务的高效处理和高质量输出。

Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
B端AI Agent
以下是关于 B 端 AI Agent 的相关知识: 一、概念定义 1. 智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如 bot 和 GPTs 等。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 C 端案例:如社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:字节扣子和腾讯元器若为面向普通人的低代码平台,类似 APP 时代的个人开发者,那么帮助 B 端商家搭建 Agent 就类似 APP 时代专业做 APP 的。 2. 智能体开发平台:最早接触到的扣子 Coze 是通过一篇科技报道,如 2 月 1 日,字节正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人较常用的是扣子,所以常对比字节扣子和腾讯元器。 3. 关注智能体的原因:目前 AI Agent 的概念在市场上未达成共识,存在被滥用现象。AI Agent 指的是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。其应用具有个性化、自主完成任务、多 Agent 协作等特点。目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品少,一方面是高度智能化的 Agent 能力需打磨,概念落地有距离;另一方面是 AI 和娱乐消费诉求结合少,主要带来生产方式和效率变革,个人消费者方向目前只看到“私人助理”场景。
2025-04-15
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
,AI agent 发展趋势,技术状态,商业模式
以下是关于 AI Agent 的发展趋势、技术状态和商业模式的相关信息: 发展趋势: 2024 年内,办公场景“AI 助手”开始有良好使用体验,实时生成的内容开始在社交媒体内容、广告中出现。 2025 2027 年,接近 AGI 的技术出现,人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 技术状态: 目标实现基于 ReAct、SFT、RAG、强化学习等实现自主规划能力的 AI Agent,构建具备认知、决策智能的 Agent 智能体框架。 专注文本/多模态大模型、AI Agent 技术创新与应用。 商业模式: 依据不同类型销售市场的特点,结合一站式 AI 搭建平台将销售部署的产品化和模版化,让企业更容易落地和应用 AI 能力。 销售智能体 Blurr.AI 占位交易环节,解决 2B 销售获客的痛点,且具有向前后端环节延展的势能。
2025-04-13
AGENT
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 智能体具有以下特点: 1. 自主系统:通过感知环境(通常通过传感器)并采取行动(通常通过执行器)来达到某种目标。 2. 关键组成部分: 规划:将大型任务分解为更小、可管理的子目标,有效处理复杂任务。 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 记忆:包括短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆信息。 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息。 以下是一些与智能体相关的资源目录: 关于 2025AGENT 智能体全球创作大赛: 1. 报名:通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可,且参赛完全免费。 2. 提交作品:在本网站直接提交,若采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可获得额外会员奖励。 3. 奖项设置:设有金、银、铜奖和多个单项奖,获奖后将获得组委会颁发的奖金和证书,需保证联系方式准确以便联系。 4. 知识产权归属:参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-04-12
AI workflow在企业中是否比Agent应用价值和场景更多
AI workflow 和 Agent 在企业中的应用价值和场景各有特点。 Agentic Workflows 具有以下优势: 1. 灵活性、适应性和可定制性:能够根据任务难度进行调整和演变,通过组合不同模式实现定制,在需求和复杂性增长时进行迭代升级。 2. 在复杂任务上的性能提升:将复杂任务分解为更小、可管理的步骤,显著优于确定性的零样本方法。 3. 自我纠正和持续学习:能够评估自身行为,完善策略,从过去经验中学习,在每次迭代中变得更有效和个性化。 4. 操作效率和可扩展性:可以高精度自动化重复任务,减少人工操作和运营成本,还能轻松扩展。 Agentic Workflow 的应用场景包括原子设计模式的组合、与人类反馈循环集成等。例如,Agentic RAG 在检索增强生成流程中引入了一个或多个 AI Agents,在规划阶段可进行查询分解等操作,还能评估数据和响应的相关性和准确性。 一般来说,Workflow 是一系列旨在完成特定任务或目标的相互连接的步骤。最简单的工作流是确定性的,遵循预定义步骤序列。有些工作流利用大模型或其他 AI 技术,分为 Agentic 和非 Agentic 两类。非 Agentic 工作流中,大模型根据指令生成输出。Agentic Workflow 是由单个或几个 AI Agents 动态执行的一系列连接步骤,被授予权限收集数据、执行任务并做出决策,利用 Agents 的核心组件将传统工作流转变为响应式、自适应和自我进化的过程。 综上所述,不能简单地说 AI workflow 在企业中比 Agent 应用价值和场景更多,这取决于企业的具体需求和任务特点。
2025-04-09
和manus差不多的软件
以下是与 Manus 模式类似的软件: 1. Same.dev:像素级 UI 还原,自动生成对应代码,云端运行,支持自定义编码,但免费额度使用快,需输入 API,目前网站被标记危险。相关链接: 2. Genspark Super Agent:作为世界上首个 MixtureofAgents 系统,集多种功能于一体,能自动完成复杂任务。在 GAIA 基准测试的三个级别中得分均高于 Manus,具有近乎即时的结果、执行过程中错误和幻觉显著减少、让用户掌控一切并能指导和优化输出等优势。它是世界上第一个 MixtureofAgents 系统,利用最佳模型、工具和数据集来执行不同的任务,比如基础智能体的对话、图片、视频生成以及翻译。
2025-04-11
OpenManus
以下是关于 OpenManus 的相关信息: 比赛说明: 赛道一 OpenManus 效果 规则:自由修改代码,复现 Manus 原版某一方面的效果,可参考 12 个精选 Case。可以选择优化某类任务下执行的效果、优化前端页面或复刻宣传效果等,方向不限。 规模:队伍规模在 1 3 人之间。 评判:由组委会评委与大众人气投票热度评分,比例 8:2。 奖项:一、二、三等奖。 赛道二 OpenManus 创意 规则:自由修改代码,通过任何手段或工具,使用 OpenManus 得到有趣效果,完成有趣任务。 规模:队伍规模在 1 3 人之间。 评选规则:由组委会评委与大众人气投票热度评分,比例 2:8。 奖项:一、二等奖。 时间表: 线上启动:2025 年 3 月 21 日,线上启动会。 报名时间:3 月 20 日 3 月 28 日。 比赛阶段:3 月 21 日 4 月 3 日。 提交截止:4 月 3 日 23:59。 人气评审阶段:4 月 4 日 4 月 8 日 23:59,作品线上展示,大众投票。 结果公布&颁奖:4 月 10 日。 趋势研究: Manus 注重实用性和用户体验,目前虽为内测阶段但已计划开源部分模型以构建生态影响力。受其启发,开源社区涌现了如 OpenManus、OWL 等快速复刻的项目。多智能体的协作机制成为业界热点,通过让不同专长的 Agent 各司其职、相互通信,一个 AI 系统可以具备更大的灵活性和扩展性。例如,复杂业务流程中的不同环节可由不同 Agent 完成,再由调度 Agent 统筹协调。这种架构在一定程度上模拟了人类团队协作的问题求解方式,被认为是迈向更通用智能的重要路径。Anthropic 也在其 Agent 研发中引入类似理念,区分“Workflow”(固定流程)和“Agent”(自主决策流程)的概念,指出当任务复杂度和不确定性较高时,应让 LLM 自行规划调用工具,而非预设流水线。总之,多 Agent 系统通过模块化分工+自主协调,提升了大型任务的可管理性和成功率,已成为 2025 年 Agent 系统设计的主流思路之一。 开发进展: 距离 OpenManus 开源第一天已过去 12 天,收获了大量关注和 37k stars。在此期间不断完善和优化,包括修复已知 bug、兼容不同 LLM 调用方式、优化基础 Manus 的各类工具等,现已迭代完成基础稳定版的开发,并举办了 OpenManus Hackathon 比赛,邀请充满好奇心的小伙伴参加,展示创造力和想象力。
2025-04-11
genspark怎么样?和cursor、manus等相比如何?
Genspark 是一款功能强大的通用智能体,具有以下特点和优势: 1. 功能集成:集 AI 聊天、图片工作室、视频生成、深度研究等多种功能于一体。 2. 任务处理能力:能够自动完成复杂任务,如自主规划、深入研究、预定外部服务、进行数据搜索和事实核查等。 3. 工具和数据集:世界上首个 MixtureofAgents 系统,利用最佳模型、工具和数据集来执行不同任务。 4. 性能表现:在 GAIA 基准测试的三个级别(Level 1、Level 2、Level 3)中得分均最高,显示出在多轮对话和复杂任务处理上的优势,能更准确地反映用户与 AI 助手互动对话的需求。 5. 速度和可靠性:近乎即时的结果,执行过程中的错误和幻觉显著减少,让用户能够掌控和优化输出。 与 Manus 相比,Genspark 更加快速和可靠,表现更为成熟与稳定。 您可以通过 https://www.genspark.ai/ 直接使用,不过注意第一个问题可以稍微思考下再提问,因为可能提一个问题之后就要收费啦。其两位创始人是明星创业者,联合创始人景鲲之前是小度科技的 CEO,联合创始人兼 CTO 朱凯华则是小度科技的 CTO。相关媒体报道可参考: 1. 特工宇宙:超越 Manus?华人创业产品 Genspark 推出通用 Agent(附实测效果) https://mp.weixin.qq.com/s/S2NCd3ySZyaRtjwC6BSG6Q 2. MAX:用过最新的 Genspark 后,我已经准备去摆摊了。 https://mp.weixin.qq.com/s/mK1Y7kmIqW56FkrJd64Vtw
2025-04-09
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
ManusAI核心技术解读
Manus AI 的核心技术包括以下几个方面: 1. 代理功能:能够自动完成任务并交付完整结果。最终交付的结果形式多样,如文档、交互网页、播客、视频、图表等,使用户能更直观地获取信息。 2. 充分利用 AI 能力:不仅进行推理和任务规划,还结合代码能力生成最终结果。 3. 云端自动运行:AI 在云端电脑上完成包括数据收集、内容撰写、代码生成等任务。其体验特点是任务运行时间较长,但最终交付的结果超出预期。 您可以通过以下链接获取更多详细信息: 体验报告:
2025-03-22
对manus启发最大的论文
以下是对 Manus 启发较大的两篇论文: 1. 《MCP 协议详解:复刻 Manus 全靠它,为什么说 MCP 是 Agent 进化的一大步?》(https://waytoagi.feishu.cn/wiki/RwIBwXlkUiSHKzk3p9UciZ8vnOf?useEs6=0&from=wiki):该论文聚焦于智能体技术的最新风口,深入剖析了 MCP 协议如何重构 AI 与工具、数据交互的方式,使 AI 真正“动起来”。通过一次搭建、无限扩展的设计理念,极大简化了 AI 助手与外部系统的对接流程,为 AI 生态搭建出高效、安全、灵活的通用接口。 2. 《屏蔽噪音,Manus 给我的 3 个启发》(https://mp.weixin.qq.com/s/s_ccBArUBKepgRNkewhx7Q):本文探讨了 AI 产品 Manus 给产品经理的三大启发,包括展示过程、允许干预,确保用户理解 AI 的操作与结果;信任机器,减少人为干预,让 AI 自行探索与生成任务;关注用户体验,特别是付费用户对效果的期待。
2025-03-21
deepseek 私有化部署
DeepSeek 的私有化部署相关信息如下: PaaS 平台特性:支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 云端部署操作:登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 模型试用方法:使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 作业布置:部署成功一个大语言模型,通过调试证明成功,在调试内容中带上钉钉昵称向模型对话,将成功结果提交问卷可获得阿里云小礼包。 API 调用与服务关停:介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 模型蒸馏概念:教师模型将知识蒸馏给学生模型,有多种蒸馏方式,如 R1 通过蒸馏数据集并用于学生模型微调。 蒸馏应用场景:包括车机等算力有限场景,能让小模型在特定领域有良好效果,还能实现低成本高速推理和修复模型幻觉。 模型部署实操:在 model gallery 中选择模型,如 1000 问 7B 指令模型,进行部署,选择 VIM 加速和竞价模式,查看部署状态和日志。 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较:R1 模型通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。
2025-03-24
如何一步一步实现RAG 模型的私有化部署
要一步一步实现 RAG 模型的私有化部署,可参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 关于 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 需先安装,访问 https://ollama.com/download/ 下载安装,安装后确保 ollama 后台服务已启动。 5. 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题实现 RAG。 6. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯。 2. 上下文数据质量和大模型的性能决定 RAG 系统性能上限。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 构建有效的 RAG 系统需要考虑多个因素: 1. 数据安全性:若有需求,需进行私有化部署,并考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集带来高昂的文档清洗、解析和分割成本,大数据量级带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现本地部署资讯问答机器人时,如 Langchain + Ollama + RSSHub 实现 RAG,需导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识、实现快速迭代和定制化信息检索。 构建有效的 RAG 系统并不简单,企业若要进行私有化部署,需考虑以下因素: 1. 数据安全性:若有需求,需考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集会带来高昂的文档清洗、解析和分割成本,大数据量级会带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,会带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现 RAG 模型私有化部署还涉及一些技术操作,如本地部署资讯问答机器人时,需要导入依赖库、从订阅源获取内容、为文档内容生成向量等。
2025-03-20
deepseek 私有化训练
以下是关于 DeepSeek 私有化训练的相关信息: 模型测试、问题探讨与新模型部署过程: 探讨了模型存在幻觉、答案有概率性等问题,并对比了加提示词前后的情况。 准备从 32B 蒸馏新模型,提及该模型的资源需求及阿里云拍卖机制。 介绍了启动 DSW 获取廉价 CPU 资源,以及部署模型时因库存不足不断加价的过程。 派平台大模型训练与微调实操讲解: 许键分享了抢硬件资源的方法,演示了通过提问蒸馏标注数据。 讲解了在派平台训练模型的流程,包括参数设置、数据集上传等,并展示了训练效果和日志查看。 说明了训练好的模型部署方法,强调训出满意模型需要大量基础知识学习。 模型蒸馏微调演示、平台介绍与问题解答: 许键展示了模型微调后的效果,如幻觉下降等。 介绍了阿里云解决方案,对比了百炼和派平台的差异。 进行了 Q&A,回答了无监督学习微调、训练数据资源、多模态训练标注、Python 代码报错等问题,提及派平台有公用数据集,还举例说明了多模态标注方式。 总结: 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较: R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 智能章节: 许键介绍今日课程重点是云服务器上如何使用 Deepseek R1 及本地部署相关内容,提及派平台免费额度及适用模型。还介绍了自己和社区情况。接着讲解 Deepseek R1 制作过程,包括强化学习概念及示例,阐述其从 Deepseek r e Zero 到 M2 等模型的演变及原理。 主要介绍了 Deepseek R1 模型的构建过程,包括多轮强化学习和微调,还提及蒸馏模型的情况。探讨了不同模型部署所需的显存、内存及成本,对比了各模型在专业领域的能力表现。 介绍了以云基础设施和 GPU 算力资源为底层的派平台。该平台搭建 AI 框架并做优化,提供一键式快捷部署工具等。与百炼不同,它开放更多自由度,租户数据隔离。很多大模型在此训练,支持多机分布式部署等,既面向企业,也适合个人创业者,不同应用定价有差异。
2025-03-05
通义千问私有化部署方案
以下是关于通义千问私有化部署的相关方案: 1. 在 FastGPT+OneAPI+COW 框架下的部署: 回到宝塔,选择 Docker(若显示“当前未安装”则进行安装,否则无需此步)。 点击确定,等待安装完成,完成后刷新页面确认安装成功。 打开左侧【终端】,粘贴两行命令验证 Docker 是否可用。 一条一条复制并粘贴相关命令完成安装。 访问 OneAPI,地址为:http://这里改成你自己宝塔左上角的地址:3001/(举例:http://11.123.23.454:3001/),账号默认 root,密码 123456。 点击【渠道】,类型选择阿里通义千问,名称随意。 将千问里创建的 API Key 粘贴到秘钥里,点击确认。 点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】。 点击【令牌】,复制出现的 key 并保存。 2. 在 Langchain+Ollama+RSSHub 框架下的部署: Ollama 支持包括通义千问在内的多种大型语言模型,适用于多种操作系统,同时支持 cpu 和 gpu。 可通过 https://ollama.com/library 查找模型库,通过简单步骤自定义模型,还提供了 REST API 用于运行和管理模型及与其他应用程序的集成选项。 访问 https://ollama.com/download/ 进行下载安装,安装完之后确保 ollama 后台服务已启动。 3. 在 0 基础手搓 AI 拍立得框架下的部署: 可以选择通义千问作为模型供应商,其指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高。接口调用费用为:调用:¥0.008/千 tokens,训练:¥0.03/千 tokens。可参考 。
2025-02-26