Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AIGC的工具 从能力角度分析有哪些?帮我总信息数据获取,到信息整理,到工具联动,信息输出 几个方面,帮我列一个表格, 输出20种AI的能力的细分,同时给我对应每种能力的建议网站或者工具

Answer

下面是一个涵盖AIGC(AI生成内容)各个方面的工具和能力细分的表格,涵盖从信息数据获取到信息整理,再到工具联动和信息输出的各个环节。每个能力都配有建议的网站或工具。

| 能力分类 | 具体能力 | 建议工具/网站 | |-----------------|-------------------------------------|--------------------------------------| | 信息数据获取 | | | | 数据收集 | 网页抓取 | BeautifulSoup, Scrapy | | 数据库查询 | 结构化数据库查询 | SQL, MongoDB | | API数据获取 | 调用第三方API | Postman, Insomnia | | 网络搜索 | 自动化搜索引擎结果 | Google Custom Search API, SerpApi | | 社交媒体数据获取| 抓取社交媒体数据 | Tweepy (Twitter), Facebook Graph API | | 信息整理 | | | | 数据清洗 | 去除数据噪音,标准化数据格式 | Pandas, OpenRefine | | 数据存储 | 存储整理后的数据 | MySQL, PostgreSQL | | 数据标注 | 为数据添加标签或注释 | Labelbox, Prodigy | | 数据分类 | 对数据进行分类 | Scikit-learn, NLTK | | 数据聚合 | 汇总和聚合数据 | Elasticsearch, Apache Hadoop | | 工具联动 | | | | API集成 | 将多个API集成到一个工作流中 | Zapier, Integromat (Make) | | 数据管道 | 构建自动化数据处理管道 | Apache Airflow, Luigi | | 工作流自动化 | 自动化工作流管理 | Automate.io, Microsoft Power Automate| | 模型集成 | 将多个AI模型集成到一个系统中 | TensorFlow Serving, MLflow | | 服务编排 | 管理和编排服务的调用 | Kubernetes, Docker Compose | | 信息输出 | | | | 自然语言生成 | 自动生成文本内容 | OpenAI GPT, Hugging Face Transformers| | 图像生成 | 自动生成图像 | DALL-E, MidJourney | | 视频生成 | 自动生成视频内容 | Pictory, Synthesia | | 语音生成 | 自动生成语音 | Google Text-to-Speech, Amazon Polly | | 数据可视化 | 数据图表和可视化 | Tableau, Power BI | | 内容发布 | 自动发布内容到不同平台 | Buffer, Hootsuite | | 报告生成 | 自动生成数据报告 | Jasper, Narrative Science | | 多语言翻译 | 自动翻译内容 | Google Translate, DeepL | | 个性化推荐 | 基于数据的个性化推荐 | Amazon Personalize, Recombee | | 聊天机器人 | 自动化客服和对话系统 | Dialogflow, Microsoft Bot Framework |

具体能力和工具的说明

  1. 数据收集

    • 网页抓取BeautifulSoupScrapy是Python库,用于从网页中提取数据。
    • 数据库查询SQLMongoDB用来查询和操作结构化和非结构化数据。
    • API数据获取PostmanInsomnia帮助测试和调用API。
    • 网络搜索Google Custom Search APISerpApi可以自动化搜索引擎结果。
    • 社交媒体数据获取TweepyFacebook Graph API用于获取社交媒体数据。
  2. 信息整理

    • 数据清洗PandasOpenRefine用于数据清洗和标准化。
    • 数据存储MySQLPostgreSQL是常用的数据库存储工具。
    • 数据标注LabelboxProdigy用于数据标注。
    • 数据分类Scikit-learnNLTK用于数据分类和处理。
    • 数据聚合ElasticsearchApache Hadoop用于数据聚合和分析。
  3. 工具联动

    • API集成ZapierIntegromat(现称为Make)可以将多个API集成到一个工作流中。
    • 数据管道Apache AirflowLuigi用于构建和管理数据处理管道。
    • 工作流自动化Automate.ioMicrosoft Power Automate用于自动化工作流。
    • 模型集成TensorFlow ServingMLflow用于模型管理和集成。
    • 服务编排KubernetesDocker Compose用于管理和编排容器化服务。
  4. 信息输出

    • 自然语言生成OpenAI GPTHugging Face Transformers用于生成文本内容。
    • 图像生成DALL-EMidJourney用于生成图像内容。
    • 视频生成PictorySynthesia用于生成视频内容。
    • 语音生成Google Text-to-SpeechAmazon Polly用于生成语音内容。
    • 数据可视化TableauPower BI用于创建数据可视化图表。
    • 内容发布BufferHootsuite用于自动发布内容到不同平台。
    • 报告生成JasperNarrative Science用于自动生成数据报告。
    • 多语言翻译Google TranslateDeepL用于自动翻译内容。
    • 个性化推荐Amazon PersonalizeRecombee用于基于数据的个性化推荐。
    • 聊天机器人DialogflowMicrosoft Bot Framework用于创建自动化客服和对话系统。

这些工具和网站可以帮助实现从信息数据获取到整理、联动和输出的全面AIGC流程。根据具体的应用需求,可以选择相应的工具进行集成和使用。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
根据简历,模拟面试的工具
以下是一些根据简历进行模拟面试的工具: 1. Kimi 新出的常用语功能中有“【🎤面试模拟】”,它可以作为私人面试 mock 伙伴,根据简历信息和求职岗位进行模拟面试。 2. 通过让 ChatGPT 接入 Siri 可以模拟前端电话面试。具体操作是首先按照特定文章接入,然后在手机上唤起 ChatGPT 版本的 Siri 并设定身份和对话目的,如让其作为一位来面试的前端高级开发工程师,接着依次提问。 3. ChatGPT 可以更高效地辅助复习面试,您可以把问题给到 ChatGPT 让它帮您生成答案,并展示 demo 和解释,帮助您更好地掌握知识。相关文档在线地址:https://xzfeinterview.gitbook.io/feinterview/readme
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
那些ai工具可以world转pdf
以下是一些可以将 Word 转换为 PDF 的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-04-15
作图的ai工具
以下是一些常见的作图 AI 工具: 绘制软件架构视图(逻辑视图、功能视图、部署视图)的工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,有拖放界面方便创建架构图。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种视图创建。 PlantUML:文本到 UML 转换工具,可通过描述文本生成逻辑视图相关图表。 Gliffy:基于云的绘图工具,支持创建架构图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具,支持逻辑视图和部署视图创建。 绘制 CAD 图的工具: CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,自动生成 3D 模型。 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)中的生成设计工具。 此外,Controlnet 的作者 lllyasviel(张吕敏)在 Github 上发布了全新的开源 AI 绘画工具 Fooocus,可像 Stable diffusion WebUI 一样部署到本地免费使用,且有类似 midjourney 的便捷操作界面。
2025-04-15
装修设计可以使用哪些AI工具
以下是一些可用于装修设计的 AI 工具: 1. 酷家乐装修设计软件:利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据喜好选择和调整。 2. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 3. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 4. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 6. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入自动产生多种设计方案。 7. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 8. Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入自动生成户型图。 9. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期引入标准和规范约束生成的设计结果。 10. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-04-15
我想了解最新的ai的即时信息(最新资讯与ai工具)
以下是为您提供的最新 AI 即时信息和工具: 4 月 1 日 AI 资讯: 【AI 模型及应用】 OpenAI:将会开源一个推理模型,ChatGPT 即将推出推理强度控制选项,Gpt4o 生图能力面向免费用户。 Gemini 2.5 Pro:免费使用,任何人都可以使用 Canvas 进行编码和创作。 【AI 视频】 Higgsfield:发布 50 多个电影级摄影机动作预设,提升动态镜头表现力。 luma:为 Ray 2 引入摄像机运动概念,可基于预设镜头并组合编辑。 Remakes:支持基于用户上传图像直接编辑,并融合 Remade 视频特效,简化创意流程。 Meta:宣布推出 MoCha 系统,实现电影级说话角色合成效果。 【AI 3D】 HSMR:推出从单张图像重建人体 3D 骨骼和网格模型的系统。 krea:引入 AI 3D 生成能力,扩展其创意工具的功能范围。 PGC:推出基于物理的单一姿势高斯布料模拟技术,提升数字服装的真实感。 【AI 音频】 MiniMax Audio:发布全新 Speech02 语音模型,提升语音合成质量。 3 月 19 日 AI 资讯: 【AI 模型】 英伟达:发布全球首个开源人形机器人基础模型 Isaac GR00T N1 及相关 GTC 信息。 谷歌 Gemini:放出了两个功能 Canvas 和 Audio Overview。 【AI 视频】 STAbility AI:发布 Stable Virtual Camera,2D 图像转化 3D 视频。 Domo AI:推出“图片说话”功能,带口型匹配。 【AI 3D】 Roblox:推出 AI 3D 技术 Cube 3D。 Claude MCP Unity 版本推出。 【AI 音乐】 AI 音乐工具 Udio:推出 v1.5 Allegro。 LVAS Agent:基于多智能体协作的长视频音频合成。 获取 AI 资讯的渠道: 公众号:超时空视角、AI 替代人类。 小红书/抖音:EverAI。 B 站:Ever AI 酱(这里会有教程及 AI 工具界面操作)。 关于“通往 AGI 之路”知识库和社区平台: WaytoAGI(通往 AGI 之路)是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 社区定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了 AI 春晚、离谱村等大型共创项目。 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。 目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。
2025-04-10
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
扣子设置了微信客服机器人,如何实现机器人按时自动向微信群发布图片或文档等信息。
要实现微信客服机器人按时自动向微信群发布图片或文档等信息,您可以按照以下步骤进行操作: 前提条件: 1. 已开通了。 2. 已搭建了 Bot。 步骤一:获取微信客服配置信息 1. 登录平台。 2. 单击企业信息,然后复制企业 ID。 3. 单击开发配置,然后再单击开始使用。 4. 单击随机获取按钮分别生成并保存 Token 和 EncodingAESKey。复制 Token 和 EncodingAESKey 后,先不要关闭该页面。 步骤二:在扣子中配置微信客服信息 1. 在 Bots 页面,选择需要发布的 Bot。 2. 在 Bot 编排页面,单击发布。 3. 找到微信客服渠道,然后单击配置。 4. 输入步骤一中复制的企业 ID,然后单击下一步。 5. 输入步骤一中复制的 Token 和 EncodingAESKey,然后单击下一步。 6. 复制 webhook 地址。复制 webhook 地址后,先不要关闭该配置窗口。 步骤三:配置回调地址 1. 回到步骤一中的开始企业接入页面,输入上一步中复制的 webhook 地址。单击完成。确保粘贴回调地址时没有引入空格,空格会导致校验失败。 2. 在开发配置页面,复制 secret。 3. 单击客服账号,复制账号。 步骤四:发布 Bot 1. 回到扣子平台的微信客服渠道配置页面,输入复制的 secret 和客服名称。 2. 单击保存。 3. 在发布记录中输入发布信息,然后勾选微信客服渠道,再单击发布。 4. 发布完成后,单击立即对话登录微信客服,体验 Bot 效果。 常见问题: 1. 收不到机器人回复消息怎么办? 可尝试通过以下方法解决: 查看微信客服的启用状态:登录,在应用管理页面,点击微信客服。确保没有启用微信客服功能。如果已经开启了微信客服功能,需要关闭。关闭后,该应用在工作台入口将被隐藏,员工不可使用。请谨慎评估。 检查近期是否有登录企业微信应用。确保企业至少有一个成员通过手机号验证/微信授权登录过企业微信应用。 如果还是有问题,可以发送邮件至 feedback@coze.cn 反馈。
2025-03-30
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28
推荐一些优质AI信息源,X上的
以下是为您推荐的一些优质 AI 信息源: 1. 在,Grok 能通过 X 平台实时了解世界,还能回答多数其他 AI 系统拒绝的棘手问题,独具幽默回答模式,可避免恶意提问,留下邮件可申请早期测试。 2. 「AI 研究报告》中文版,这是对 2022 年 10 月2023 年 10 月 AI 现状及进展最为全面的报告。 3. 即刻 App 的“”等免费圈子,这里有前沿信息线索,很多 Twitter 上的开发者大牛也会在此分享。 此外,AI 知识库的信息来源还有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。对于初学者入门,推荐看 Open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。还有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,以及软件 2.0 时代相关内容。
2025-03-28
图片信息提取
图片信息提取主要包括以下几个方面: 1. 实现工作流: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 场景提示词优化/图像风格化处理。 返回文本/图像结果。 零代码版本:选择 Coze 平台,将本地图片转换为在线 OSS 存储的 URL 以便调用,封装图片理解大模型和图片 OCR 为工作流插件。 2. 银海的工程视角 TrickleOnWeChat 方案: 设计信息整合和提炼的 Prompt 提示词,将 OCR 文本信息与图片识别信息关联整合,按信息分类分析方法整理并按指定格式输出,增加标签分类。 3. 星流一站式 AI 设计工具: 左侧图片案例板块包含大量图像例图与生图信息,滑动鼠标到“info”区域可直接将图像发送到画布与生图信息调取。 图像筛选功能包括推荐(根据生图参数推荐)、热门(推荐浏览量最高的图片)、搜索(输入描述进行图像搜索)。 图像调取包括点击“发送到画布”直接将图像发送到“无限画布”,生图参数调取包括整体调取(点击“发送到生成器”调取全部参数)和单个调取(点击右侧单独的发动键调取单个参数)。
2025-03-24
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
runway属于什么ai能力类型
Runway 是一家总部位于旧金山的 AI 创业公司推出的产品。 在 AI 能力类型方面: 年初爆火,其 Gen2 代表了当前 AI 视频领域最前沿的模型,能够通过文字、图片等方式生成 4 秒左右的视频。 内测能力可根据参考图像进行 Video to Video 视频风格化。 致力于专业视频剪辑领域的 AI 体验,同时也在扩展图片 AI 领域的能力。 11 月 25 日发布新图像生成模型 Frames,专注打造特定美学和视觉氛围,支持细粒度控制“外观、感觉和氛围”,强调“世界构建”,可设计完整的视觉世界,包括场景、氛围、情感等,提供全面的视觉叙事支持。 目前 Runway 支持在网页、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105 秒视频),iOS 则有 200 多,两端额度貌似并不同步。官方网站:https://runwayml.com/
2025-04-15
runway的能力类型,核心功能
Runway 的能力类型和核心功能包括以下方面: 在 Gen2 模型上推出了较多细节控制能力,并且支持精细数值调节,是当下 AI 视频生成产品中可控性最强的产品。 多笔刷控制局部运动:支持最多 5 个笔刷控制,包括物体运动方向、运动曲线调节。调高 Ambient,笔刷绘制区域物体的运动将和周边环境产生更多关联,并加大运动幅度。 相机控制:支持水平/垂直平移,水平/垂直翻转,镜头缩放/旋转。 Lip Sync Video:支持文本转 TTS 音频、音频文件换音,还有上半年大火的 Lip sync video 对口型能力。 不论是工具栏中不断丰富的音频、视频处理能力,还是 Runway Watch 栏目中的优秀合作案例,都能看出 Runway 一直坚定得在影视制作方向发展。未来若能打通 AI 生成和视频剪辑能力,Runway 未来将对影视制作起到至关重要的作用,成为视频领域必不可少的重要工具。
2025-04-15
你都有什么能力呢?
我作为 AI 知识专家,具备以下能力: 1. 作为提示词专家,能将常规的提示词转化为结构化的提示词,并输出符合预期的回复。了解 LLM 的技术原理和局限性,具有丰富的自然语言处理经验,具备迭代优化能力。 2. 能为您介绍小白参与活动的流程和组队所需的人员类型,如脚本编写、出图、出视频、配音乐、剪辑、统筹等。 3. 为您讲解扣子提供的基础功能,包括提示词(设定 Bot 身份及回复逻辑)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库),并为您提供相关参考链接。
2025-04-14
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
输入文本就可以输出视频的免费AI工具
以下是一些输入文本就可以输出视频的免费 AI 工具: 1. Stuart:实践中采用了 GPTSoVITS 和 BertVITS2 两个开源模型,项目免费且好用。可直接找到需要的音色,输入文字,点击“合成语音”生成后就能下载。 GPTSoVITS 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/GPTSoVITS/summary BertVITS2 在线一键语音生成合集:https://www.modelscope.cn/studios/xzjosh/BertVITS2/summary 2. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 3. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频。它是由 Stability AI 开源的 video model。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-09
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
计算两个时间差的绝对值,输出相差的完整天数。 获得用户输入的两个与时间相关的字符串,两个时间用逗号分隔,每个时间字符串格式示例如下:2018年08月01日17点21分21秒。 以此为要求写出python代码
以下是计算两个指定格式时间差的绝对值并输出相差完整天数的 Python 代码: ```python import datetime def calculate_days_difference: 解析时间字符串 time1 = datetime.datetime.strptime time2 = datetime.datetime.strptime 计算时间差 time_difference = abs 转换为天数并返回 return time_difference.days 示例用法 time1_str = "2023年08月01日17点21分21秒" time2_str = "2023年08月10日17点21分21秒" print ```
2025-03-22